Mathematics 111

Spring 2009
Homework 5

1. Let R be a PID and M a finitely generated R-module. Show that M is projective if and only if it is free.
2. Let M be a submodule of \mathbb{Z}^{n} having group index p in M, i.e., $\left[\mathbb{Z}^{n}: M\right]=p$, where p is a prime. Show that M is free of rank n, and there is a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{Z}^{n} so that $M=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n-1} \oplus \mathbb{Z} p e_{n}$.
3. Show that a vector $v=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ extends to a basis $\left\{v, v_{2}, \ldots, v_{n}\right\}$ of \mathbb{Z}^{n} if and only if the a_{i} are coprime, that is $a_{1} \mathbb{Z}+\cdots+a_{n} \mathbb{Z}=\mathbb{Z}$. Hint: For one direction, come up with a short exact sequence that splits.
4. Let F_{1} and F_{2} be free modules of (not necessarily the same) finite rank over a PID R. Let $\varphi: F_{1} \rightarrow F_{2}$ be R-linear and nontrivial. Show that there exists bases $\left\{v_{1}, \ldots, v_{n}\right\}$ of F_{1} and $\left\{w_{1}, \ldots, w_{m}\right\}$ of F_{2} together with elements a_{1}, \ldots, a_{r} of R so that

$$
\varphi\left(v_{i}\right)= \begin{cases}a_{i} w_{i} & 1 \leq i \leq r \\ 0 & r+1 \leq i \leq n\end{cases}
$$

with $a_{1}\left|a_{2}\right| \cdots \mid a_{r}$, and the ideals $a_{j} R$ uniquely determined.
5. Let $A=\left(\begin{array}{lll}4 & 7 & 2 \\ 2 & 4 & 6\end{array}\right)$.
(a) If $\varphi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2}$ is a \mathbb{Z}-linear map whose matrix with respect to the standard bases is A, determine the structure of the cokernel $\mathbb{Z}^{2} / \operatorname{Im}(\varphi)$ as a direct sum of cyclic groups. Find a minimal set of generators for the quotient. Hint: The image of φ is the span of the columns (i.e., the column space), and you may assume without loss of generality that elementary column operations (over \mathbb{Z}) leave the column space unchanged. Explain how your answer is connected to the invariant factor theorem.
(b) Determine all integer solutions to $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=0$. Hint: Elementary row operations (over \mathbb{Z}) do not change the kernel.

