Mathematics 111

Spring 2009
Homework 4

1. (A theorem not proven in class). Let R be a ring with identity, M a right R-module and N a free left R-module with basis $\left\{e_{i}\right\}_{i \in I}$. Show that every element in $M \otimes_{R} N$ can be written uniquely as a finite sum $\sum_{i \in I} m_{i} \otimes e_{i}, m_{i} \in M$. Here uniquely means that if $\sum_{i} m_{i_{k}} \otimes e_{i_{k}}=\sum_{i} m_{i_{k}}^{\prime} \otimes e_{i_{k}}$, then $m_{i_{k}}=m_{i_{k}}^{\prime}$ for all i_{k}.
Hint: Use the fact that tensor product commutes with the coproduct to reduce to the one-dimensional case. Then prove that as abelian groups $M \otimes_{R} R e_{i} \cong M$ by exhibiting inverse homomorphisms between them.
2. Show that, as a corollary to the above problem, if $R \subset S$ are rings with $1_{R}=1_{S}$, then for any free left R-module N with basis $\left\{e_{i}\right\}_{i \in I}, S \otimes_{R} N$ is a free left S-module with basis $\left\{1_{S} \otimes e_{i}\right\}_{i \in I}$.
3. (problem 25, D\&F, 10.4) Let $R \subset S$ be commutative rings with $1_{R}=1_{S}$. Show that as S-algebras, $S \otimes_{R} R[x] \cong S[x]$, where x is an indeterminate over S. Be sure to pay attention to justifying that your isomorphism is S-linear.
4. (problem 26, D\&F, 10.4) Let $R \subset S$ be commutative rings with $1_{R}=1_{S}$, and let I be an ideal in the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$. Show that as S-algebras, $S \otimes_{R}\left(R\left[x_{1}, \ldots, x_{n}\right] / I\right) \cong S\left[x_{1}, \ldots, x_{n}\right] / I S\left[x_{1}, \ldots, x_{n}\right]$.
5. Let $L=\mathbb{Q}\left(\zeta_{5}\right)$ be the fifth cyclotomic field and let $K=\mathbb{Q}(\sqrt[5]{2})$. Using problem 4, determine $L \otimes_{\mathbb{Q}} K$ as an L-algebra. It is a vector space over L, and its dimension can be computed in two ways one of which uses field theory. Are your answers consistent?
6. Using problem 4 , compute $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt[4]{2})$ as a \mathbb{Q}-algebra in two ways (thinking of the tensor product as an extension of scalars in two ways). Are your summands all isomorphic as \mathbb{Q}-algebras? Why or why not?
