Mathematics 111

Spring 2009
Homework 1

1. For a positive integer m, let $\mathbb{Z} / m \mathbb{Z}$ denote the usual ring of integers modulo m. We wish to consider the existence of ring homomorphisms $\varphi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ and their properties. Note that this will also inform us of properties of $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$.
(a) For positive integers m, n show that if $\operatorname{gcd}(m, n)=1$, then (viewed as set of group or \mathbb{Z}-module homomorphisms), $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / m \mathbb{Z}, \mathbb{Z} / n \mathbb{Z})=\{0\}$.
(b) If m, n are positive integers, show that if $n \mid m$ there is a natural surjective ring homomorphism $\varphi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. Show that φ induces a group homomorphism $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$which is also surjective.
2. Inverse limits. Let I be a partially ordered set (see Appendix I if unsure of the definition), and for each $i \in I$, let A_{i} be a group (also works in other categories). Suppose that for each $i, j \in I, i \leq j$ we are given a homomorphism $\varphi_{j i}: A_{j} \rightarrow A_{i}$ satisfying:

- $\varphi_{j i} \circ \varphi_{k j}=\varphi_{k i}$ whenever $i \leq j \leq k$, and
- $\varphi_{i i}$ is the identity map for all $i \in I$.

Let $P=\left\{\left(a_{i}\right) \in \prod_{i \in I} A_{i} \mid a_{i}=\varphi_{j i}\left(a_{j}\right)\right.$ whenever $\left.i \leq j\right\} ; P$ is denoted $P=\varliminf_{\leftarrow} A_{i}$, and is called the inverse or projective limit of the A_{i}.
(a) Show that $\lim _{i}$ is a group under the operations inherited from the direct product.
(b) (Universal mapping property). For each $k \in I$, let $\varphi_{k}: \lim _{i} \rightarrow A_{k}$ be the standard projection. Suppose that G is any group such that for each $i \in I$ there is a homomorphism $\pi_{i}: G \rightarrow A_{i}$ so that $\pi_{i}=\varphi_{j i} \circ \pi_{j}$ whenever $i \leq j$. Show that there is a unique homomorphism $\pi: G \rightarrow \lim _{\ddagger} A_{i}$ such that $\varphi_{i} \circ \pi=\pi_{i}$ for all $i \in I$.

3. Examples of inverse limits.

(a) Let p be a prime, $I=\mathbb{Z}_{+}$with the usual partial ordering, and put $A_{i}=\mathbb{Z} / p^{i} \mathbb{Z}$. For $i \leq j$, let $\varphi_{j i}: A_{j} \rightarrow A_{i}$ be the ring homomorphism defined in 1b. The inverse limit of the $A_{i}, \varliminf_{\lfloor } \mathbb{Z} / p^{i} \mathbb{Z}$, is denoted \mathbb{Z}_{p} and called the ring of p-adic integers.
i. Show that every element of \mathbb{Z}_{p} can be written uniquely as a formal sum $b_{0}+b_{1} p+b_{2} p^{2}+b_{3} p^{3}+\cdots$ where each $b_{i} \in\{0,1, \ldots, p-1\}$. Represent each element in $A_{i}=\mathbb{Z} / p^{i} \mathbb{Z}$ as a least residue $\bmod p$ and express the element in its base p expansion. Characterize the action of the maps $\varphi_{j i}$ on these representations. Note that this implies that \mathbb{Z}_{p} is an uncountable set.
ii. Show that an element $\alpha=b_{0}+b_{1} p+b_{2} p^{2}+b_{3} p^{3}+\cdots \in \mathbb{Z}_{p}$ is a unit (in the ring) if and only if $b_{0} \neq 0$.
(b) Let $I=\mathbb{Z}_{+}$and partially order I by divisibility: that is " $n \leq m$ " iff $n \mid m$. Let $A_{n}=\mathbb{Z} / n \mathbb{Z}$ and for $n \mid m$, let $\varphi_{m n}: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the ring homomorphism in 1 b . The inverse limit is denoted $\widehat{\mathbb{Z}}=\lim \mathbb{Z} / n \mathbb{Z}$.
Now consider a field F and fix an algebraic closure \bar{F} of F. Let I denote the set of finite Galois extensions K / F where $F \subseteq K \subseteq \bar{F}$. Partially order I by inclusion, that is $K_{1} \leq K_{2}$ iff $K_{1} \subseteq K_{2}$. For each $K \in I$, let $A_{K}=\operatorname{Gal}(K / F)$.
i. For $K \subseteq L$ (elements of I), define the natural group homomorphisms $\varphi_{L K}: A_{L} \rightarrow A_{K}$ and justify (via Galois theory) that they are surjective group homomorphisms.
ii. Now let $F=\mathbb{F}_{p}$. Give a more complete description of the elements of I and the corresponding A_{i}, and a refined notion of the partial order. Justify that the Galois group of $\bar{F} / F, \operatorname{Gal}(\bar{F} / F):=\lim _{\rightleftarrows} \operatorname{Gal}(K / F) \cong \widehat{\mathbb{Z}}$.
iii. Use this characterization of $\widehat{\mathbb{Z}}$ to show that that for any prime $q, \mathbb{Z}_{q} \subset \widehat{\mathbb{Z}}$.

