Note to grader: please accept some rounding errors. E.g. using a "close enough" value in the table is fine.

Instructions

- Type your answers and paste images directly into this document.
- Or add additional space, print this out, and fill it in by hand.
- You will probably need to use a calculator for this homework.
- Print out and hand in homework in class on Tuesday.
- You may collaborate on the homework but you must write it up yourselves.

Hypothesis Testing For Difference Between Two Means

Question 1 - 15 points

Suppose we have two normally distributed populations 1 and 2, with the same unknown variance. You take two samples from them.

Sample 1	-	sample mean = 18,	sample SD = 2,	size n = 10
Sample 2	-	sample mean = 15,	sample SD = 3,	size n = 10

"Sample SD" is the estimator of the standard deviation, which is calculated using the data in the sample.

Perform a <u>one-tailed</u> hypothesis test at the 3% level of significance, on whether these two populations have the same population mean, or if population 1 has a <u>larger</u> mean.

Answers :

Null hypothesis : difference between population mean = 0 (can write mu1 – mu2 = 0 too). Alternative : population mean 1 greater than 2. (only one-tailed tests accepted)

SE = sqrt((4+9)/10) = 1.14. Degrees of freedom = 2(10-1) = 18.

t-statistic = (18-15)/1.14 = 2.63. P(difference > 18 - 15 = 3) = P(T > 2.63) < P(T > 2.55) = 0.01 < 0.03. Null rejected at 3% level of significance. Pop. 1 probably has a larger mean.

Question 2 – 15 points

Suppose we have two populations.

Population 1 Population 2	-	population variance population variance	= 15 = 20
Sample 1	-	sample mean = 97,	size n = 20
Sample 2	-	sample mean = 90,	size n = 30

Perform a <u>two-tailed</u> hypothesis test at the 10% level of significance, on the hypothesis that population 1 and population 2 has the same population mean.

Answers:

Null hypothesis : pop. mean same (or diff. in pop mean = 0, or mu1 - mu2 = 0). Alternative hypothesis : pop mean difference (or diff. in pop mean not 0, or mu1 - mu2 not = 0).

SE = sqrt(15/20 + 20/30) = 1.190 z-statistic = (97 - 90)/1.190 = 5.882

P(Z >= 5.882) < 0.001 for sure.

So, we reject the null at 10% level of significance. The two population probably do not have the same population mean.

Grader: they do not have to use the two-tailed p-value of $2* P(Z \ge 5.882)$ for this course. But they should also be given full credit for doing so. Also, it is fine to call P($Z \ge 5.882$) the p-value for this course.