Note to grader: please accept some rounding errors. E.g. using a "close enough" value in the table is fine.

Instructions

- Type your answers and paste images directly into this document.
- Or add additional space, print this out, and fill it in by hand.
- You will probably need to use a calculator for this homework.
- Print out and hand in homework in class on Tuesday.
- You may collaborate on the homework but you must write it up yourselves.

Hypothesis Testing For Difference Between Two Means

Question 1-15 points
Suppose we have two normally distributed populations 1 and 2, with the same unknown variance. You take two samples from them.

Sample 1	-	sample mean $=18$,	sample $S D=2$,	size $\mathrm{n}=10$
Sample 2	-	sample mean $=15$,	sample $\mathrm{SD}=3$,	size $\mathrm{n}=10$

"Sample SD" is the estimator of the standard deviation, which is calculated using the data in the sample.

Perform a one-tailed hypothesis test at the 3\% level of significance, on whether these two populations have the same population mean, or if population 1 has a larger mean.

Answers :

Null hypothesis: difference between population mean $=0$ (can write mu1 $-\mathrm{mu} 2=0$ too). Alternative : population mean 1 greater than 2 . (only one-tailed tests accepted)

```
SE = sqrt((4+9)/10) = 1.14.
Degrees of freedom = 2(10-1) = 18.
```

t-statistic $=(18-15) / 1.14=2.63$.
$\mathrm{P}($ difference $>18-15=3)=\mathrm{P}(\mathrm{T}>2.63)<\mathrm{P}(\mathrm{T}>2.55)=0.01<0.03$.

Null rejected at 3% level of significance. Pop. 1 probably has a larger mean.

Question 2-15 points
Suppose we have two populations.
Population 1 - population variance $=15$
Population $2-\quad$ population variance $=20$
Sample 1 - \quad sample mean $=97$, size $\mathrm{n}=20$
Sample 2 - sample mean $=90, \quad$ size $\mathrm{n}=30$

Perform a two-tailed hypothesis test at the 10% level of significance, on the hypothesis that population 1 and population 2 has the same population mean.

Answers:
Null hypothesis : pop. mean same (or diff. in pop mean $=0$, or mu1 - mu2 $=0$).
Alternative hypothesis : pop mean difference (or diff. in pop mean not 0 , or mu1-mu2 not $=0$).

SE $=\operatorname{sqrt}(15 / 20+20 / 30)=1.190$
z-statistic $=(97-90) / 1.190=5.882$
$P(Z>=5.882)<0.001$ for sure .
So, we reject the null at 10% level of significance. The two population probably do not have the same population mean.

Grader: they do not have to use the two-tailed p-value of 2* $\mathrm{P}(\mathrm{Z}>=5.882)$ for this course. But they should also be given full credit for doing so. Also, it is fine to call P(Z >=5.882) the p-value for this course.

