Math 10 - Spring 2013

Homework 9

Due May 29, 2013
If at first it doesnt fit, fit, fit again. - John McPhee

Turn in: Exercises $7.20,7.23,7.26,7.30,7.32,8.3,8.6,8.7,8.10$ from the textbook, and problem 10 below.
10. The least-squares fit to a set of points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \cdots\left(x_{N}, y_{N}\right)$ treats the variables x and y unsymmetrically. Specifically, the best fit for a line $y=\beta_{0}+\beta_{1} x$ is found assuming that the numbers $y_{1}, \cdots y_{N}$ are all equally uncertain, whereas the variables $x_{1}, \cdots x_{N}$ have negligible uncertainty. If the situation were reversed, the roles of x and y would have to be exchanged and x and y fitted to a line $x=\gamma_{0}+\gamma_{1} y$. The resulting two lines would be the same if the points lay exactly on a line, but will generally be slightly different. The following illustrates this small difference. (Hint: you might want to calculate the sums of squares $S S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}, S S_{y y}=\sum\left(y_{i}-\bar{y}\right)^{2}$, and $S S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ since they will show up several times in this problem.)
a. Find the best fit to the line $y=\beta_{0}+\beta_{1} x$ for the data below. (Recall, one way to compute the slope is $\beta_{1}=\frac{S S_{x y}}{S S_{x x}}$.)
b. Calculate the residuals e_{i} for this fit.
c. Use the formula $s_{e}^{2}=\frac{1}{N-2} \sum e_{i}^{2}$ to compute the standard deviation s_{e} of the residuals.
d. Use this value, s_{e} to compute the standard error, and a 95% confidence interval for the slope, β_{1}. This standard error for the slope is given by the formula

$$
s_{\beta_{1}}=\frac{s_{e}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}=\frac{s_{e}}{\sqrt{S S_{x x}}} .
$$

e. Finally, find a best fit to the line $x=\gamma_{0}+\gamma_{1} y$, by reversing the roles of x and y, (Hint: $\gamma_{1}=\frac{S S_{x y}}{S S_{y y}}$) and solve the equation for y to get a formula of the form $y=\beta_{0}^{\prime}+\beta_{1}^{\prime} x$. How does the slope in this equation compare to the slope and confidence interval you found above?

x	1	3	5	6
y	8	7	3	1

