Your Name Here

Math 105

Homework 4

1. (3-3-12) Let K be a number field, and \mathcal{O}_{K}^{\times}its unit group. Show that $\varepsilon \in \mathcal{O}_{K}^{\times}$iff $N_{K / \mathbb{Q}}(\varepsilon)= \pm 1$.
2. (3-3-12) Let $D \in \mathbb{Z}$, squarefee $D<0$, and set $K=\mathbb{Q}(\sqrt{D})$. Let $i=\sqrt{-1}$ and ω a primitive cube root of unity in \mathbb{C}. Show that the units of K form a finite cyclic group. In particular, show

$$
\mathcal{O}_{K}^{\times}= \begin{cases}\langle i\rangle=\{ \pm 1, \pm i\} & \text { if } D=-1 \\ \langle-\omega\rangle=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\} & \text { if } D=-3 \\ <-1>=\{ \pm 1\} & \text { otherwise }\end{cases}
$$

3. (3-3-12) Let $D \in \mathbb{Z}$, squarefee $D>1$, and set $K=\mathbb{Q}(\sqrt{D})$.
(a) Show that $\mathcal{O}_{K}^{\times} \cong\{ \pm 1\} \times\langle\varepsilon\rangle$ where ε has infinite order.
(b) The unique generator ε which satisfies $\varepsilon>1$ is called the fundamental unit of K. Show that the fundamental unit of $K=\mathbb{Q}(\sqrt{2})$ is $\varepsilon=1+\sqrt{2}$. Note: it is not always so easy: The fundamental unit of $\mathbb{Q}(\sqrt{94})$ is $\varepsilon=2143295+221064 \sqrt{94}$.
