Math 105

Homework 3

(3-2-2) (Understanding the topology on the ideles) Let K be a number field. We know that the adeles of K, \mathbb{A}_K , is a topological ring, as is each factor K_{ν} with respect to their respective topologies. Establish the following:

- 1. For a non-archimedean place ν of K, show that K_{ν} is a topological field. Here one need only show that for $\alpha \in K_{\nu}^{\times}$, $\alpha \mapsto \alpha^{-1}$ is continuous.
- 2. Show that in the subspace topology on \mathbb{A}_K^{\times} , the map $\widetilde{\alpha} \mapsto \widetilde{\alpha}^{-1}$ is not continuous.
- 3. If instead, we embed \mathbb{A}_{K}^{\times} into $\mathbb{A}_{K} \times \mathbb{A}_{K}$ via $\widetilde{\alpha} \mapsto (\widetilde{\alpha}, \widetilde{\alpha}^{-1})$, then inversion is continuous with respect to the subspace topology inherited from $\mathbb{A}_{K} \times \mathbb{A}_{K}$.