Math 105

Homework 1

1. Let K be a number field of degree n over \mathbb{Q}, q a prime in \mathbb{Z}, and suppose that $q \mathcal{O}_{K}=Q_{1}^{e_{1}} \cdots Q_{r}^{e_{r}}$ is the factorization of $q \mathcal{O}_{K}$ as a product of prime ideals in \mathcal{O}_{K}. Show that

$$
\left[\mathcal{O}_{K}: q \mathcal{O}_{K}\right]=q^{n}=\prod_{i=1}^{r}\left[\mathcal{O}_{K}: Q_{i}\right]^{e_{i}}
$$

Note that this proves that $n=[K: \mathbb{Q}]=\sum_{i=1}^{r} e_{i} f_{i}$ where $\left[\mathcal{O}_{K}: Q_{i}\right]=q^{f_{i}}$.
2. Let K be a number field, $[K: \mathbb{Q}]=n$ and let $\alpha \in \mathcal{O}_{K}$ with $K=\mathbb{Q}(\alpha)$. It is not always the case that the ring of integers of a number field has the form $\mathbb{Z}[\alpha]$, but we can often show that it is by gaining information about how large $\mathbb{Z}[\alpha]$ is as a subring of \mathcal{O}_{K}.
Suppose that $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]=m$. Show that $\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)=m^{2} d_{K}$ where d_{K} is the discriminant of K.
3. Let L / K be an extension of number fields with $n=[L: K]$. Suppose that $L=K(\alpha)$, and put $f=m_{\alpha, K}$ be its minimal polynomial. Show that

$$
\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right)=(-1)^{\frac{n(n-1)}{2}} N_{L / K}\left(f^{\prime}(\alpha)\right)
$$

where $N_{L / K}(\alpha)=\prod_{\sigma \in E} \sigma(\alpha)$ is the norm from L to K and f^{\prime} is the formal derivative of f; here E is the set of all embedding of L into an algebraic closure of K which fix K pointwise.
4. Let K be a number field with $K=\mathbb{Q}(\alpha)$ for some $\alpha \in \mathcal{O}_{K}$, and suppose that $\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]=m$. Let $f=m_{\alpha, \mathbb{Q}}=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ be the minimal polynomial of α. Show that if f is Eisenstein with respect to some rational prime p ($p \mid a_{i}$ for all i, but $p^{2} \nmid a_{0}$), then $p \nmid m$.
Some hints.

- First show that the Eisenstein condition implies that $\alpha^{n} / p \in \mathcal{O}_{K}$ and that $p^{2} \nmid N_{K / \mathbb{Q}}(\alpha)$.
- Next assume that $p \mid m=\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$. We shall try to obtain a contradiction. To begin, show there exists $\xi=\mathcal{O}_{K} \backslash \mathbb{Z}[\alpha]$ with $p \xi=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1} \in \mathbb{Z}[\alpha]$, and not all b_{i} divisible by p.
- Let j be the smallest index with $p \nmid b_{j}$ and put $\eta=\left(b_{j} \alpha^{j}+\cdots+b_{n-1} \alpha^{n-1}\right) p^{-1}$. Show that η and $\zeta=b_{j} \alpha^{n-1} p^{-1}$ are elements of \mathcal{O}_{K}.
- Explore $N_{K / \mathbb{Q}}(p \zeta)$ to produce the contradiction.

5. Let $K=\mathbb{Q}(\sqrt[3]{5})$. The goal is to prove that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{5}]$ using some of the tools you have developed in the problems above.
(a) Show that the discriminant $\Delta(1, \sqrt[3]{5}, \sqrt[3]{25})=-3^{3} \cdot 5^{2}$. Note that this implies an upper bound on the index $\left[\mathcal{O}_{K}: \mathbb{Z}[\sqrt[3]{5}]\right]$.
(b) Note that $f=x^{3}-5$ is Eisenstein with respect to the prime 5, and $g=(x+5)^{3}-5$ is Eisenstein with respect to the prime 3. How can you use this to reach the desired conclusion?
6. Let p be a prime in \mathbb{Z}, ζ a primitive p^{n} th root of unity in \mathbb{C}, and put $K=\mathbb{Q}(\zeta)$. Show that $\mathcal{O}_{K}=\mathbb{Z}[\zeta]$.
Some hints.

- Show that the discriminant $d_{K}=(-1)^{p(p-1) / 2} p^{N}$ where $N=n \phi\left(p^{n}\right)-p^{n-1}$ where ϕ is the Euler totient function. Recall that the minimal polynomial of ζ is the p^{n} th cyclotomic polynomial which for prime powers is easy to compute.
- Then show that the element $(1-\zeta)$ has minimal polynomial which is Eisenstein with respect to the prime p.

