(1) Prove that $\Lambda\left(\omega_{1}, \omega_{2}\right)=\Lambda\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ if and only if there are integers a, b, c and d with $a d-b c= \pm 1$ such that

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\omega_{1}}{\omega_{2}} .
$$

(2) Let $\Lambda=\Lambda\left(\omega_{1}, \omega_{2}\right)$ and let $\wp=\wp_{\Lambda}$.
(a) For any $c \in \mathbb{C}$, prove that $\wp(z)-c$ has exactly two zeros (or a single double zero) in $\Pi^{\prime}=\left\{a \omega_{1}+b \omega_{2}: 0 \leq a<1,0 \leq b<1\right\}$.
(b) Prove that $\wp(z)-c$ has a single double zero in Π^{\prime} exactly when c is $e_{1}=\wp\left(\omega_{1} / 2\right)$, $e_{2}=\wp\left(\omega_{2} / 2\right)$ or $e_{3}=\wp\left(\left(\omega_{1}+\omega_{2}\right) / 2\right)$.
(c) Conclude that $\left(\wp^{\prime}(z)\right)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right)$.
(3) Prove that for $k \geq 4, E_{k}(z)=\frac{1}{2} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n)=1}} \frac{1}{(m z+n)^{k}}$.
(4) (a) Prove that

$$
E_{2}(\gamma z)=(c z+d)^{2} E_{2}(z)+\frac{12 c}{2 \pi i}(c z+d)
$$

You may use the fact that

$$
E_{2}(-1 / z)=z^{2} E_{2}(z)+\frac{12 z}{2 \pi i}
$$

without proof.
(b) Let f be a modular form of weight k for Γ, and define

$$
g(z):=\frac{1}{2 \pi i} f^{\prime}(z)-\frac{k}{12} E_{2}(z) f(z)
$$

Prove that $g(z)$ is a weight $k+2$ modular form for Γ, and that it is a cusp form if and only if f is a cusp form.
(5) Does there exist $f(z) \in S_{50}(\Gamma)$ whose Fourier expansion starts as follows?
(a) $q+1391 q^{2}+611387 q^{3}-65464592 q^{4}-177273987830 q^{5}+50038976872422 q^{6}$.
(b) $2008 q+2795131 q^{2}+1228965068 q^{3}-131587216304 q^{4}-356296628154400 q^{5}$.

