# Prerequisites

# 1 Set Theory

We recall the basic facts about countable and uncountable sets, union and intersection of sets and images and preimages of functions.

#### 1.1 Countable and uncountable sets

We can compare infinite sets via bijections or one-to-one correspondences.

**Definition 1** Let I be an arbitrary set.

- a) The set I is **finite**, if there is a bijective map  $f : I \to \{1, 2, 3, ..., n\}$  for some positive integer n.
- b) The set *I* is **infinite**, if it is not finite.
- c) The set I is **countably infinite**, if there is a bijective map  $f: I \to \mathbb{N}$ .
- d) The set I is **countable**, if it is either finite or countably infinite.
- e) The set *I* is **uncountable**, if it is not countable.

We recall:

Theorem 2 A subset of a countably infinite set is countable.

We have furthermore the important theorem: **Theorem 3** A countable union of countable sets is countable.

**proof:** It is sufficient to prove the statement for a disjoint union  $A = \biguplus_{i=1}^{\infty} A_i$  of countably infinite sets  $A_i$ . This is true as

- 1.) Each union of sets  $\bigcup_{i=1}^{\infty} B_i$  can be decomposed into a disjoint union  $\biguplus_{i=1}^{\infty} B'_i$  of sets by removing multiple occurrences.
- 2.) Each finite set  $B'_i$  can be extended to an infinite set  $\tilde{B}_i$ , such that  $\tilde{B}_i \cap B'_k = \emptyset$  for all  $k \neq i$ .
- 3.) If  $\biguplus_{i=1}^{\infty} \tilde{B}_i$  is countably infinite, then the subset  $\bigcup_{i=1}^{\infty} B_i$  is countable by **Theorem 2**.

So suppose we have a disjoint union  $\biguplus_{i=1}^{\infty} A_i$  of countably infinite sets  $A_i$ . We list all elements of  $A = \biguplus_{i=1}^{\infty} A_i$ :

$$A_{1} = \{x_{11}, x_{12}, x_{13}, \dots, x_{1n}, \dots\}$$

$$A_{2} = \{x_{21}, x_{22}, x_{23}, \dots, x_{2n}, \dots\}$$

$$\vdots$$

$$A_{m} = \{x_{m1}, x_{m2}, x_{m3}, \dots, x_{mn}, \dots\}$$

As the factorization into primes is unique, we know that the set of positive integers  $S = \{2^k \cdot 3^n, n, k \in \mathbb{N}\}$  satisfies:

$$2^{k_1} \cdot 3^{n_1} = 2^{k_2} \cdot 3^{n_2} \Leftrightarrow k_1 = k_2 \text{ and } n_1 = n_2.$$
 (\*)

Hence the assignment  $f: S \to \bigoplus_{i=1}^{\infty} A_i$ , defined by  $f(2^k \cdot 3^n) = x_{kn}$  is a well-defined map which is bijective. Hence  $\biguplus_{i=1}^{\infty} A_i$  is in one-to-one correspondence with a subset of  $\mathbb{N}$ , which by **Theorem 2** is countable. Hence  $A = \biguplus_{i=1}^{\infty} A_i$  is also countable.  $\Box$ 

**Examples 4**  $\mathbb{N}$ ,  $\mathbb{Z}$  and  $\mathbb{Q}$  are countable, hence by the previous theorem we know that

$$\mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \biguplus_{i \in \mathbb{Z}} (i, \mathbb{Z}) \text{ and } \mathbb{Q}^2 = \mathbb{Q} \times \mathbb{Q} = \biguplus_{q \in \mathbb{Q}} (q, \mathbb{Q})$$

are countable. Using this argument iteratively we have that for fixed  $n, \mathbb{Z}^n$  and  $\mathbb{Q}^n$  are countable.

#### **1.2** Sets and functions

**Theorem 1 (De Morgan's Law)** Let  $(A_i)_{i \in I} \subset X$  be a collection of sets in X. If  $A^c = X \setminus A$  for all  $A \subset X$ , then

a)  $\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c$ b)  $\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$ 

**proof** a) We have

$$\left(\bigcup_{i\in I} A_i\right)^c = X \setminus \{x \in X \mid \exists i \in I, \text{ such that } x \in A_i\} = \{x \in X \mid \neg (\exists i \in I, \text{ such that } x \in A_i)\} = \{x \in X \mid \forall i \in I, x \notin A_i\} = \{x \in X \mid \forall i \in I, x \in A_i^c\} = \bigcap_{i \in I} A_i^c. \Box$$

b) Similarly

$$\begin{split} \left( \bigcap_{i \in I} A_i \right)^c &= X \setminus \{ x \in X \mid \forall i \in I, x \in A_i \} = \\ & \{ x \in X \mid \neg (\forall i \in I, \text{ we have that } x \in A_i) \} = \\ & \{ x \in X \mid \exists i \in I, \text{ such that } x \notin A_i \} = \{ x \in X \mid \exists i \in I, x \in A_i^c \} = \bigcup_{i \in I} A_i^c. \Box \end{split}$$

**Lemma 2 (Functions and Sets)** Let  $f : X \to Y$  be a function. Let  $(A_j)_{j \in J} \subset X$  be a collection of sets in X. Let furthermore  $(B_i)_{i \in I} \subset Y$  be a collection of sets in Y and  $B \subset Y$ . Then

a) 
$$f\left(\bigcap_{j\in J} A_j\right) \subset \bigcap_{j\in J} f(A_j).$$
  
b)  $\bigcup_{j\in J} f(A_j) = f\left(\bigcup_{j\in J} A_j\right).$   
c)  $f^{-1}(B)^c = f^{-1}(B^c).$   
d)  $\bigcup_{i\in I} f^{-1}(B_i) = f^{-1}\left(\bigcup_{i\in I} B_i\right) \text{ and } \bigcap_{i\in I} f^{-1}(B_i) = f^{-1}\left(\bigcap_{i\in I} B_i\right).$ 

**proof** a) We have that

$$f\left(\bigcap_{j\in J} A_j\right) = \{y\in Y \mid y=f(x) \text{ and } f(x)\in f(\bigcap_{j\in J} A_j)\} = \{f(x)\in Y \mid \forall j\in J, \text{ we have } x\in A_j\}.$$

Furthermore

$$\bigcap_{j \in J} f(A_j) = \{ y \in Y \mid \forall j \in J, \text{ we have } y \in f(A_j) \} = \{ f(x) \in Y \mid \forall j \in J, \text{ we have } f(x) \in f(A_j) \}.$$

Now if  $x \in A_j$  then  $f(x) \in f(A_j)$  and the first set is contained in the second.

Note We see that the converse is not true by taking  $f : \{1, 2\} \rightarrow \{1\}$ , where f(1) = f(2) = 1. For  $A_1 = \{1\}$  and  $A_2 = \{2\}$  we get

$$f(A_1 \cap A_2) = \emptyset$$
, but  $f(A_1) \cap f(A_2) = \{1\}$ .

b) We know that

$$\bigcup_{j \in J} f(A_j) = \{ y \in Y \mid \exists j \in J, \text{ such that } y \in f(A_j) \} = \{ f(x) \in Y \mid \exists j \in J, \text{ such that } f(x) \in f(A_j) \}.$$

On the other hand

$$f\left(\bigcup_{j\in J} A_j\right) = \{y\in Y \mid y=f(x) \text{ and } \exists j\in J, \text{ such that } x\in A_j\} = \{f(x)\in Y \mid \exists j\in J, \text{ such that } x\in A_j\}.$$

But if  $x \in A_j$  then  $f(x) \in f(A_j)$  and the second set is contained in the first. On the other hand if  $f(x) \in f(A_j)$  for some  $j \in J$  then there is x', such that f(x) = f(x') and  $x' \in A_j$  for some  $j \in J$ . So the first set is contained in the second.

c) We know that

$$\bigcup_{i \in I} f^{-1}(B_i) = \{ x \in X \mid \exists i \in I, \text{ such that } x \in f^{-1}(B_i) \} = \{ x \in X \mid \exists i \in I, \text{ such that } f(x) \in B_i \}.$$

We compare this with

$$f^{-1}\left(\bigcup_{i\in I} B_i\right) = \{x\in X \mid f(x)\in \bigcup_{i\in I} B_i\} = \{x\in X \mid \exists i\in I, \text{ such that } f(x)\in B_i\}$$

which shows that the sets are equal. We prove the second statement in a similar fashion.  $\Box$ 

d) We know that

$$f^{-1}(B)^c = X \setminus f^{-1}(B) = X \setminus \{x \in X \mid f(x) \in B\} = \{x \in X \mid f(x) \notin B\}.$$

On the other hand we have that

$$f^{-1}(B^c) = \{x \in X \mid f(x) \in B^c\} = \{x \in X \mid f(x) \notin B\}$$

and the two sets are equal.

# 2 Topology

The proofs of the following theorems can be found in Munkres, *Topology*, 2nd edition, Chapter 2, Section 12,13 and 20.

#### 2.1 Basics

**Definition 1** Let X be a set. A **topology** on X is a collection  $\mathcal{T} \subset \mathcal{P}(X)$  of subsets of X, such that

- a)  $\emptyset \in \mathcal{T}$  and  $X \in \mathcal{T}$ .
- b)  $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$  ( $\mathcal{T}$  is closed under intersection).
- c)  $(A_k)_{k \in K} \subset \mathcal{T} \Rightarrow \bigcup_{k \in K} A_k \in \mathcal{T} \ (\mathcal{T} \text{ is closed under any union}).$

In this case the elements of  $\mathcal{T}$  the **open subsets** of X and  $(X, \mathcal{T})$  is called a **topological space**.

**Examples**  $\mathcal{T} = \{\emptyset, X\}$  or  $\mathcal{T}' = \mathcal{P}(X)$ .

**Remark 2** b) implies that  $\mathcal{T}$  is stable under finite intersections.

**Definition 3** Let  $(X, \mathcal{T})$  and  $(X', \mathcal{T}')$  be topological spaces. A function  $f: X \to X'$  is continuous if

$$f^{-1}(A') \in \mathcal{T}$$
 for all  $A' \in \mathcal{T}'$ .

**Definition 4 (Basis)** Let  $(X, \mathcal{T})$  be a topological space. Then  $\beta \subset \mathcal{T}$  is a basis for the topology  $\mathcal{T}$  if

for all 
$$A \in \mathcal{T}$$
 we have that  $A = \bigcup_{i \in I} A_i$  where  $(A_i)_{i \in I} \subset \beta$ .

This means that every element in  $\mathcal{T}$  is a union of elements of  $\beta$ .

**Theorem 5 (Basis = neighbourhood basis)**  $\beta$  is a basis for the topology  $\mathcal{T}$  iff

for all  $A \in \mathcal{T}$  and for all  $x \in A \exists U(x) = U \in \beta$ , such that  $x \in U \subset A$ .

**Definition 6 (second countable)** A topological space  $(X, \mathcal{T})$  is called **second countable** if there is a countable basis for its topology.

**Example** A second countable basis for the usual topology of the real line  $\mathbb{R}$  is given by the intervals with rational endpoints.

**Proposition 7** If (X, d) is a metric space with a countable dense subset, the topology induced by the metric is second countable.

proof We know that

- 1.) the basis  $\beta_d$  of the topology  $\mathcal{T}_d$  induced by the metric d is the collection of open balls in (X, d):  $\beta_d = \{B_r(x) \mid r \in \mathbb{R}^+, x \in X\}$
- 2.) there is a countable dense subset  $D = (x_n)_{n \in \mathbb{N}} \subset X$  in X.

3.) by **Theorem 5**, as  $\beta_d$  is a basis, we know that for all  $A \in \mathcal{T}_d$  and  $x \in A$  there is  $B_r(x') \subset \beta_d$ , such that  $x \in B_r(x') \subset A$ .

We take

$$\beta = \{ B_{\perp}(x_n) \mid m, n \in \mathbb{N} \}.$$

Take  $A \in \mathcal{T}$  and  $x \in A$  as in 3.). From this condition it follows that it is sufficient to show that there is a ball  $B_{\frac{1}{m}}(x_n) \in \beta$ , such that  $B_{\frac{1}{m}}(x_n) \subset B_r(x')$ . Furthermore, if  $x' \neq x$ , we can find a ball of smaller radius around x that also satisfies 3.). Hence we can assume that x' = x.

To construct our ball we take  $m \in \mathbb{N}$ , such that  $\frac{r}{2} > \frac{1}{m} \Leftrightarrow r > \frac{2}{m}$ . By the density of D there is  $x_n \in D$ , such that  $d(x_n, x) < \frac{1}{m}$ . Then for every point  $\tilde{x} \in B_{\frac{1}{m}}(x_n)$  we have by the triangle inequality:

$$d(\tilde{x}, x) \le d(\tilde{x}, x_n) + d(x_n, x) < \frac{1}{m} + \frac{1}{m} < r$$

Hence  $x \in B_{\frac{1}{m}}(x_n) \subset B_r(x) \subset A$  and therefore  $\beta$  is a countable basis for  $\mathcal{T}$ .

# 3 Limits

We recall the definition of infimum and supremum and lim inf and lim sup. The correspondig theorems and definitions can be, for example found in *Gordon*, *Real Analysis - A First Course*, 2nd edition.

#### 3.1 Infimum and supremum

**Definition 1** Let  $S \subset \mathbb{R}$  be a non-empty set of real numbers. Suppose S is bounded above. The number  $\beta$  is the **supremum of** S if  $\beta$  is an upper bound of S and any number less than  $\beta$  is not an upper bound of S i.e.

for all  $b < \beta$  there is an  $x \in S$ , such that b < x.

We will write  $\beta = \sup(S)$ .

**Definition 2** Let  $S \subset \mathbb{R}$  be a non-empty set of real numbers. Suppose S is bounded below. The number  $\alpha$  is the **infimum of** S if  $\alpha$  is a lower bound of S and any number greater than  $\alpha$  is not a lower bound of S i.e.

```
for all a > \alpha there is an x \in S, such that a > x.
```

We will write  $\alpha = \inf(S)$ .

#### 3.2 The extended real number line

see Wilkins: The extended real number system.

#### 3.3 Limit superior and limit inferior

We recall the following definitions from real analysis:

Let  $(a_n)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$  be a sequence. For  $k \geq 1$  consider the new sequence

$$b_k = \sup_{n \ge k} a_n = \sup\{a_k, a_{k+1}, a_{k+2}, a_{k+3}, \ldots\}$$

Then  $b_k \ge b_{k+1}$  for all  $k \in \mathbb{N}$  and therefore  $\lim_{k\to\infty} b_k = \inf_{k\in\mathbb{N}} b_k \in \overline{\mathbb{R}}$ . We define:

**Definition 1 (Limit superior and inferior)** We call the **limit superior** of a sequence  $(a_n)_n \subset \overline{\mathbb{R}}$  the number

$$\limsup_{n \in \mathbb{N}} a_n \stackrel{\mathbf{Def.}}{=} \lim_{k \to \infty} b_k = \inf_{k \in \mathbb{N}} b_k$$

In a similar fashion we call the **limit inferior** of a sequence  $(a_n)_n \subset \mathbb{R}$  the number

$$\liminf_{n \in \mathbb{N}} a_n \stackrel{\text{Def.}}{=} \lim_{k \to \infty} \inf_{n \ge k} a_n.$$

**Example** The sequence  $(a_n)_{n \in \mathbb{N}} = \left(\frac{\cos(n)}{n}\right)_{n \in \mathbb{N}}$  and the sequence  $(c_k)_{k \in \mathbb{N}}$  where  $c_k = \inf_{n \ge k} a_n$ .



Figure 1: Plot of  $\frac{\cos(x)}{x}$  (red) and the sequence  $(a_n)_{n \in \mathbb{N}} = \left(\frac{\cos(n)}{n}\right)_{n \in \mathbb{N}}$  (black) and the sequence given by  $c_k = \inf_{n \ge k} a_n$  (blue).

**Proposition 2** For a sequence  $(a_n)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$  we have that

- a)  $\liminf_{n \in \mathbb{N}} a_n \leq \limsup_{n \in \mathbb{N}} a_n$ .
- b)  $\lim_{n\to\infty} a_n$  exists if and only if  $\liminf_{n\in\mathbb{N}} a_n = \lim_{n\to\infty} a_n = \limsup_{n\in\mathbb{N}} a_n$ .

# 4 Complex analysis

see Beck et al.: A first course in complex analysis.