Math 103: Measure Theory and Complex Analysis
 Fall 2018

Prerequisites

1 Set Theory

We recall the basic facts about countable and uncountable sets, union and intersection of sets and images and preimages of functions.

1.1 Countable and uncountable sets

We can compare infinite sets via bijections or one-to-one correspondences.
Definition 1 Let I be an arbitrary set.
a) The set I is finite, if there is a bijective map $f: I \rightarrow\{1,2,3, \ldots, n\}$ for some positive integer n.
b) The set I is infinite, if it is not finite.
c) The set I is countably infinite, if there is a bijective map $f: I \rightarrow \mathbb{N}$.
d) The set I is countable, if it is either finite or countably infinite.
e) The set I is uncountable, if it is not countable.

We recall:
Theorem 2 A subset of a countably infinite set is countable.

We have furthermore the important theorem:
Theorem 3 A countable union of countable sets is countable.
proof: It is sufficient to prove the statement for a disjoint union $A=\biguplus_{i=1}^{\infty} A_{i}$ of countably infinte sets A_{i}. This is true as
1.) Each union of sets $\bigcup_{i=1}^{\infty} B_{i}$ can be decomposed into a disjoint union $\biguplus_{i=1}^{\infty} B_{i}^{\prime}$ of sets by removing multiple occurences.
2.) Each finite set B_{i}^{\prime} can be extended to an infinite set \tilde{B}_{i}, such that $\tilde{B}_{i} \cap B_{k}^{\prime}=\emptyset$ for all $k \neq i$.
3.) If $\biguplus_{i=1}^{\infty} \tilde{B}_{i}$ is countably infinite, then the subset $\bigcup_{i=1}^{\infty} B_{i}$ is countable by Theorem 2 .

Math 103: Measure Theory and Complex Analysis
 Fall 2018

So suppose we have a disjoint union $\biguplus_{i=1}^{\infty} A_{i}$ of countably infinte sets A_{i}. We list all elements of $A=\biguplus_{i=1}^{\infty} A_{i}$:

$$
\begin{aligned}
A_{1} & =\left\{x_{11}, x_{12}, x_{13}, \ldots, x_{1 n}, \ldots\right\} \\
A_{2} & =\left\{x_{21}, x_{22}, x_{23}, \ldots, x_{2 n}, \ldots\right\} \\
\vdots & \\
A_{m} & =\left\{x_{m 1}, x_{m 2}, x_{m 3}, \ldots, x_{m n}, \ldots\right\}
\end{aligned}
$$

As the factorization into primes is unique, we know that the set of positive integers $S=\left\{2^{k} \cdot 3^{n}, n, k \in \mathbb{N}\right\}$ satisfies:

$$
2^{k_{1}} \cdot 3^{n_{1}}=2^{k_{2}} \cdot 3^{n_{2}} \Leftrightarrow k_{1}=k_{2} \text { and } n_{1}=n_{2} . \quad\left({ }^{*}\right)
$$

Hence the assignment $f: S \rightarrow \biguplus_{i=1}^{\infty} A_{i}$, defined by $f\left(2^{k} \cdot 3^{n}\right)=x_{k n}$ is a well-defined map which is bijective. Hence $\biguplus_{i=1}^{\infty} A_{i}$ is in one-to-one correspondence with a subset of \mathbb{N}, which by Theorem 2 is countable. Hence $A=\biguplus_{i=1}^{\infty} A_{i}$ is also countable.

Examples $4 \mathbb{N}, \mathbb{Z}$ and \mathbb{Q} are countable, hence by the previous theorem we know that

$$
\mathbb{Z}^{2}=\mathbb{Z} \times \mathbb{Z}=\biguplus_{i \in \mathbb{Z}}(i, \mathbb{Z}) \quad \text { and } \quad \mathbb{Q}^{2}=\mathbb{Q} \times \mathbb{Q}=\biguplus_{q \in \mathbb{Q}}(q, \mathbb{Q})
$$

are countable. Using this argument iteratively we have that for fixed n, \mathbb{Z}^{n} and \mathbb{Q}^{n} are countable.

1.2 Sets and functions

Theorem 1 (De Morgan's Law) Let $\left(A_{i}\right)_{i \in I} \subset X$ be a collection of sets in X. If $A^{c}=X \backslash A$ for all $A \subset X$, then
a) $\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c}$
b) $\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}$
proof a) We have

$$
\begin{aligned}
\left(\bigcup_{i \in I} A_{i}\right)^{c}= & X \backslash\left\{x \in X \mid \exists i \in I, \text { such that } x \in A_{i}\right\}= \\
& \left\{x \in X \mid \neg\left(\exists i \in I, \text { such that } x \in A_{i}\right)\right\}= \\
& \left\{x \in X \mid \forall i \in I, x \notin A_{i}\right\}=\left\{x \in X \mid \forall i \in I, x \in A_{i}^{c}\right\}=\bigcap_{i \in I} A_{i}^{c} .
\end{aligned}
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

b) Similarly

$$
\begin{aligned}
\left(\bigcap_{i \in I} A_{i}\right)^{c}= & X \backslash\left\{x \in X \mid \forall i \in I, x \in A_{i}\right\}= \\
& \left\{x \in X \mid \neg\left(\forall i \in I, \text { we have that } x \in A_{i}\right)\right\}= \\
& \left\{x \in X \mid \exists i \in I, \text { such that } x \notin A_{i}\right\}=\left\{x \in X \mid \exists i \in I, x \in A_{i}^{c}\right\}=\bigcup_{i \in I} A_{i}^{c} .
\end{aligned}
$$

Lemma 2 (Functions and Sets) Let $f: X \rightarrow Y$ be a function. Let $\left(A_{j}\right)_{j \in J} \subset X$ be a collection of sets in X. Let furthermore $\left(B_{i}\right)_{i \in I} \subset Y$ be a collection of sets in Y and $B \subset Y$. Then
a) $f\left(\bigcap_{j \in J} A_{j}\right) \subset \bigcap_{j \in J} f\left(A_{j}\right)$.
b) $\bigcup_{j \in J} f\left(A_{j}\right)=f\left(\bigcup_{j \in J} A_{j}\right)$.
c) $f^{-1}(B)^{c}=f^{-1}\left(B^{c}\right)$.
d) $\bigcup_{i \in I} f^{-1}\left(B_{i}\right)=f^{-1}\left(\bigcup_{i \in I} B_{i}\right)$ and $\bigcap_{i \in I} f^{-1}\left(B_{i}\right)=f^{-1}\left(\bigcap_{i \in I} B_{i}\right)$.
proof a) We have that

$$
\begin{aligned}
f\left(\bigcap_{j \in J} A_{j}\right)= & \left\{y \in Y \mid y=f(x) \text { and } f(x) \in f\left(\bigcap_{j \in J} A_{j}\right)\right\}= \\
& \left\{f(x) \in Y \mid \forall j \in J, \text { we have } x \in A_{j}\right\} .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\bigcap_{j \in J} f\left(A_{j}\right)= & \left\{y \in Y \mid \forall j \in J, \text { we have } y \in f\left(A_{j}\right)\right\}= \\
& \left\{f(x) \in Y \mid \forall j \in J, \text { we have } f(x) \in f\left(A_{j}\right)\right\} .
\end{aligned}
$$

Now if $x \in A_{j}$ then $f(x) \in f\left(A_{j}\right)$ and the first set is contained in the second.
Note We see that the converse is not true by taking $f:\{1,2\} \rightarrow\{1\}$, where $f(1)=f(2)=1$. For $A_{1}=\{1\}$ and $A_{2}=\{2\}$ we get

$$
f\left(A_{1} \cap A_{2}\right)=\emptyset, \quad \text { but } \quad f\left(A_{1}\right) \cap f\left(A_{2}\right)=\{1\} .
$$

b) We know that

$$
\begin{aligned}
\bigcup_{j \in J} f\left(A_{j}\right)= & \left\{y \in Y \mid \exists j \in J, \text { such that } y \in f\left(A_{j}\right)\right\}= \\
& \left\{f(x) \in Y \mid \exists j \in J, \text { such that } f(x) \in f\left(A_{j}\right)\right\} .
\end{aligned}
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

On the other hand

$$
\begin{aligned}
f\left(\bigcup_{j \in J} A_{j}\right)= & \left\{y \in Y \mid y=f(x) \text { and } \exists j \in J, \text { such that } x \in A_{j}\right\}= \\
& \left\{f(x) \in Y \mid \exists j \in J, \text { such that } x \in A_{j}\right\} .
\end{aligned}
$$

But if $x \in A_{j}$ then $f(x) \in f\left(A_{j}\right)$ and the second set is contained in the first. On the other hand if $f(x) \in f\left(A_{j}\right)$ for some $j \in J$ then there is x^{\prime}, such that $f(x)=f\left(x^{\prime}\right)$ and $x^{\prime} \in A_{j}$ for some $j \in J$. So the first set is contained in the second.
c) We know that
$\bigcup_{i \in I} f^{-1}\left(B_{i}\right)=\left\{x \in X \mid \exists i \in I\right.$, such that $\left.x \in f^{-1}\left(B_{i}\right)\right\}=\left\{x \in X \mid \exists i \in I\right.$, such that $\left.f(x) \in B_{i}\right\}$.
We compare this with

$$
f^{-1}\left(\bigcup_{i \in I} B_{i}\right)=\left\{x \in X \mid f(x) \in \bigcup_{i \in I} B_{i}\right\}=\left\{x \in X \mid \exists i \in I, \text { such that } f(x) \in B_{i}\right\}
$$

which shows that the sets are equal. We prove the second statement in a similar fashion.
d) We know that

$$
f^{-1}(B)^{c}=X \backslash f^{-1}(B)=X \backslash\{x \in X \mid f(x) \in B\}=\{x \in X \mid f(x) \notin B\} .
$$

On the other hand we have that

$$
f^{-1}\left(B^{c}\right)=\left\{x \in X \mid f(x) \in B^{c}\right\}=\{x \in X \mid f(x) \notin B\}
$$

and the two sets are equal.

2 Topology

The proofs of the following theorems can be found in Munkres, Topology, 2nd edition, Chapter 2, Section 12,13 and 20.

2.1 Basics

Definition 1 Let X be a set. A topology on X is a collection $\mathcal{T} \subset \mathcal{P}(X)$ of subsets of X, such that

Math 103: Measure Theory and Complex Analysis Fall 2018

a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
b) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$ (\mathcal{T} is closed under intersection).
c) $\left(A_{k}\right)_{k \in K} \subset \mathcal{T} \Rightarrow \bigcup_{k \in K} A_{k} \in \mathcal{T}$ (\mathcal{T} is closed under any union).

In this case the elements of \mathcal{T} the open subsets of X and (X, \mathcal{T}) is called a topological space.
Examples $\mathcal{T}=\{\emptyset, X\}$ or $\mathcal{T}^{\prime}=\mathcal{P}(X)$.
Remark 2 b) implies that \mathcal{T} is stable under finite intersections.
Definition 3 Let (X, \mathcal{T}) and $\left(X^{\prime}, \mathcal{T}^{\prime}\right)$ be topological spaces. A function $f: X \rightarrow X^{\prime}$ is continuous if

$$
f^{-1}\left(A^{\prime}\right) \in \mathcal{T} \quad \text { for all } \quad A^{\prime} \in \mathcal{T}^{\prime}
$$

Definition 4 (Basis) Let (X, \mathcal{T}) be a topological space. Then $\beta \subset \mathcal{T}$ is a basis for the topology \mathcal{T} if

$$
\text { for all } A \in \mathcal{T} \text { we have that } A=\bigcup_{i \in I} A_{i} \text { where }\left(A_{i}\right)_{i \in I} \subset \beta \text {. }
$$

This means that every element in \mathcal{T} is a union of elements of β.

Theorem 5 (Basis $=$ neighbourhood basis) β is a basis for the topology \mathcal{T} iff

$$
\text { for all } A \in \mathcal{T} \text { and for all } x \in A \exists U(x)=U \in \beta \text {, such that } x \in U \subset A \text {. }
$$

Definition 6 (second countable) A topological space (X, \mathcal{T}) is called second countable if there is a countable basis for its topology.

Example A second countable basis for the usual topology of the real line \mathbb{R} is given by the intervals with rational endpoints.

Proposition 7 If (X, d) is a metric space with a countable dense subset, the topology induced by the metric is second countable.
proof We know that
1.) the basis β_{d} of the topology \mathcal{T}_{d} induced by the metric d is the collection of open balls in $(X, d): \beta_{d}=\left\{B_{r}(x) \mid r \in \mathbb{R}^{+}, x \in X\right\}$
2.) there is a countable dense subset $D=\left(x_{n}\right)_{n \in \mathbb{N}} \subset X$ in X.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

3.) by Theorem 5, as β_{d} is a basis, we know that for all $A \in \mathcal{T}_{d}$ and $x \in A$ there is $B_{r}\left(x^{\prime}\right) \subset \beta_{d}$, such that $x \in B_{r}\left(x^{\prime}\right) \subset A$.

We take

$$
\beta=\left\{\left.B_{\frac{1}{m}}\left(x_{n}\right) \right\rvert\, m, n \in \mathbb{N}\right\} .
$$

Take $A \in \mathcal{T}$ and $x \in A$ as in 3.). From this condition it follows that it is sufficient to show that there is a ball $B_{\frac{1}{m}}\left(x_{n}\right) \in \beta$, such that $B_{\frac{1}{m}}\left(x_{n}\right) \subset B_{r}\left(x^{\prime}\right)$. Furthermore, if $x^{\prime} \neq x$, we can find a ball of smaller radius around x that also satisfies 3 .). Hence we can assume that $x^{\prime}=x$.
To construct our ball we take $m \in \mathbb{N}$, such that $\frac{r}{2}>\frac{1}{m} \Leftrightarrow r>\frac{2}{m}$. By the density of D there is $x_{n} \in D$, such that $d\left(x_{n}, x\right)<\frac{1}{m}$. Then for every point $\tilde{x} \in B_{\frac{1}{m}}\left(x_{n}\right)$ we have by the triangle inequality:

$$
d(\tilde{x}, x) \leq d\left(\tilde{x}, x_{n}\right)+d\left(x_{n}, x\right)<\frac{1}{m}+\frac{1}{m}<r
$$

Hence $x \in B_{\frac{1}{m}}\left(x_{n}\right) \subset B_{r}(x) \subset A$ and therefore β is a countable basis for \mathcal{T}.

3 Limits

We recall the defintion of infimum and supremum and liminf and limsup. The correspondig theorems and definitions can be, for example found in Gordon, Real Analysis - A First Course, 2nd edition.

3.1 Infimum and supremum

Definition 1 Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. Suppose S is bounded above. The number β is the supremum of S if β is an upper bound of S and any number less than β is not an upper bound of S i.e.

$$
\text { for all } b<\beta \text { there is an } x \in S \text {, such that } b<x \text {. }
$$

We will write $\beta=\sup (S)$.
Definition 2 Let $S \subset \mathbb{R}$ be a non-empty set of real numbers. Suppose S is bounded below. The number α is the infimum of S if α is a lower bound of S and any number greater than α is not a lower bound of S i.e.

$$
\text { for all } a>\alpha \text { there is an } x \in S \text {, such that } a>x \text {. }
$$

We will write $\alpha=\inf (S)$.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

3.2 The extended real number line

see Wilkins: The extended real number system.

3.3 Limit superior and limit inferior

We recall the following definitions from real analysis:
Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$ be a sequence. For $k \geq 1$ consider the new sequence

$$
b_{k}=\sup _{n \geq k} a_{n}=\sup \left\{a_{k}, a_{k+1}, a_{k+2}, a_{k+3}, \ldots\right\}
$$

Then $b_{k} \geq b_{k+1}$ for all $k \in \mathbb{N}$ and therefore $\lim _{k \rightarrow \infty} b_{k}=\inf _{k \in \mathbb{N}} b_{k} \in \overline{\mathbb{R}}$. We define:
Definition 1 (Limit superior and inferior) We call the limit superior of a sequence $\left(a_{n}\right)_{n} \subset \overline{\mathbb{R}}$ the number

$$
\limsup _{n \in \mathbb{N}} a_{n} \stackrel{\text { Def. }}{=} \lim _{k \rightarrow \infty} b_{k}=\inf _{k \in \mathbb{N}} b_{k} .
$$

In a similar fashion we call the limit inferior of a sequence $\left(a_{n}\right)_{n} \subset \overline{\mathbb{R}}$ the number

$$
\liminf _{n \in \mathbb{N}} a_{n} \stackrel{\text { Def. }}{=} \lim _{k \rightarrow \infty} \inf _{n \geq k} a_{n} .
$$

Example The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\frac{\cos (n)}{n}\right)_{n \in \mathbb{N}}$ and the sequence $\left(c_{k}\right)_{k \in \mathbb{N}}$ where $c_{k}=\inf _{n \geq k} a_{n}$.

Figure 1: Plot of $\frac{\cos (x)}{x}$ (red) and the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}=\left(\frac{\cos (n)}{n}\right)_{n \in \mathbb{N}}$ (black) and the sequence given by $c_{k}=\inf _{n \geq k} a_{n}$ (blue).

Math 103: Measure Theory and Complex Analysis Fall 2018

Proposition 2 For a sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$ we have that
a) $\liminf \inf _{n \in \mathbb{N}} a_{n} \leq \limsup \sup _{n \in \mathbb{N}} a_{n}$.
b) $\lim _{n \rightarrow \infty} a_{n}$ exists if and only if $\liminf _{n \in \mathbb{N}} a_{n}=\lim _{n \rightarrow \infty} a_{n}=\lim \sup _{n \in \mathbb{N}} a_{n}$.

4 Complex analysis

see Beck et al.: A first course in complex analysis.

