Math 103: Measure Theory and Complex Analysis
Fall 2018

Prerequisites

1 Set Theory

We recall the basic facts about countable and uncountable sets, union and intersection of sets
and images and preimages of functions.

1.1 Countable and uncountable sets

We can compare infinite sets via bijections or one-to-one correspondences.

Definition 1 Let I be an arbitrary set.

a) The set I is finite, if there is a bijective map f : I — {1,2,3,...,n} for some positive
integer n.

The set [ is infinite, if it is not finite.
The set I is countably infinite, if there is a bijective map f : I — IN.
The set I is countable, if it is either finite or countably infinite.

The set I is uncountable, if it is not countable.

We recall:
Theorem 2 A subset of a countably infinite set is countable.

We have furthermore the important theorem:
Theorem 3 A countable union of countable sets is countable.

proof: It is sufficient to prove the statement for a disjoint union A = [§;2; 4; of countably
infinte sets A;. This is true as

1.) Each union of sets |J;2, B; can be decomposed into a disjoint union 52, B; of sets by
removing multiple occurences.

2.) Each finite set B] can be extended to an infinite set B;, such that B;N B, = 0 for all k # i.

3.) If Y2, B; is countably infinite, then the subset |J;°, B; is countable by Theorem 2.
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So suppose we have a disjoint union (472, A; of countably infinte sets A;. We list all elements of
A = L".'inl Az

Ay = {zi, 712,213, ., Zp, -}
Ay = {wo1, w22, 23,...,%2p, ...}
Am = {Imlaxm%xm?)w--7xmn7-"}

As the factorization into primes is unique, we know that the set of positive integers
S = {2F.3" n,k € IN} satisfies:

le -3M = 2k2 R k1 = ko and ny = no. (*)

Hence the assignment f : S — W2, A; , defined by f(2F . 3") = xp, is a well-defined map
which is bijective. Hence 452, A; is in one-to-one correspondence with a subset of IN, which by
Theorem 2 is countable. Hence A = |#;2, A; is also countable. O

Examples 4 IN, Z and @Q are countable, hence by the previous theorem we know that
7’ =7x7Z=4(,2) and Q=QxQ=[H(q,Q)
i€Z q€Q

are countable. Using this argument iteratively we have that for fixed n, Z™ and Q" are countable.

1.2 Sets and functions
Theorem 1 (De Morgan’s Law) Let (A;),.; C X be a collection of sets in X. If A°= X\A
for all A C X, then
a) (Uies 4i)" = Nies 45
D) (Miex Ai)c = Uier Ai
proof a) We have

(UAz> = X\{z € X |Jiel, such that z € A;} =
iel
{xr € X | =(3i €1, such that z € A;)} =
{reX|VielLag A} ={zeX|Viclvc A} =()A;. O
iel
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b) Similarly

(ﬂAZ) = X\{zeX|Viel,zeA;}=
il
{z € X | =(Vi € I, we have that x € A;)} =
{reX|Jiel suchthat v ¢ A} ={re X |TielzecAf}=|]A5D
iel
Lemma 2 (Functions and Sets) Let f : X — Y be a function. Let (4;),.; C X be a

collection of sets in X. Let furthermore (B;);c; C Y be a collection of sets in ¥ and B C Y.
Then

2) F (Njes Ai) € Ny F(4)).
b) Ujes f (4) = 1 (Uje,s 45).
o) 1B = f71(B).

d) User f7H(Bi) = F 7 (User Bi) and Mg 71 (Bi) = f71 (Mies Ba)-
proof a) We have that

Jj€J jeJ
{f(x) €Y |Vj e J, we have z € A;}.

f(ﬂAj) = {yeY|y=f(x)and f(z) € F([) 4))} =

Furthermore
(f(4)) = {yeY|VjeJ wehavey e f(A))} =
jeJ
{f(z) e Y |Vj e J, wehave f(x) € f(Aj)}.
Now if z € A; then f(x) € f(A;) and the first set is contained in the second. O

Note We see that the converse is not true by taking f : {1,2} — {1}, where f(1) = f(2) = 1.
For A; = {1} and Ay = {2} we get

f(A1NAg) =0, but f(A1)N f(A2)={1}.
b) We know that

U f(4;) = {yeY |3jeJ suchthaty e f(A;)} =
jeJ
{f(xz) € Y | 3j € J, such that f(x) € f(A))}.
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On the other hand

f UAj = {yeY |y=f(z) and 3j € J, such that z € A;} =
jeJ
{f(x) € Y | 3j € J, such that x € A;}.

But if x € A; then f(z) € f(A;) and the second set is contained in the first. On the other hand
if f(z) € f(A;j) for some j € J then there is 2/, such that f(z) = f(2’) and 2/ € A; for some
j € J. So the first set is contained in the second. O

c) We know that

U (Bi)={xeX|3iel, suchthat x € f'(B;)} = {w € X | Ji € I, such that f(z) € B;}.
i€l

We compare this with
! (UBZ> ={reX| f(x)e UBZ} ={r € X | Ji € I, such that f(x) € B;}
icl icl
which shows that the sets are equal. We prove the second statement in a similar fashion. U
d) We know that
FHBY=X\[1(B)=X\{ze X | f(x) e By ={z € X | f(z) & B}.
On the other hand we have that
fHB)={ze X | f(x) e B} = {z € X | f(z) ¢ B}

and the two sets are equal.

2 Topology

The proofs of the following theorems can be found in Munkres, Topology, 2nd edition, Chapter
2, Section 12,13 and 20.
2.1 Basics

Definition 1 Let X be a set. A topology on X is a collection 7 C P(X) of subsets of X, such
that
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a) 0T and X € T.
b) A, BeT = ANB e T (T is closed under intersection).
¢) (Ap)kex CT = Upex Ak € T (T is closed under any union).

In this case the elements of 7 the open subsets of X and (X, 7) is called a topological space.
Examples 7 = {0, X} or T = P(X).
Remark 2 b) implies that 7 is stable under finite intersections.

Definition 3 Let (X, 7) and (X', 7") be topological spaces. A function f: X — X’ is contin-
uous if
fUAYeT forall A eT.
Definition 4 (Basis) Let (X, 7)) be a topological space. Then  C T is a basis for the topology
T if
forall A€ T we have that A= U A; where (A;)ier C B.
i€l

This means that every element in 7 is a union of elements of j.

Theorem 5 (Basis = neighbourhood basis) 3 is a basis for the topology T iff
forall Ae T andforallz € A3 U(z) =U € 3, suchthat v €U C A.

Definition 6 (second countable) A topological space (X, T) is called second countable if
there is a countable basis for its topology.

Example A second countable basis for the usual topology of the real line R is given by the
intervals with rational endpoints.

Proposition 7 If (X, d) is a metric space with a countable dense subset, the topology induced
by the metric is second countable.

proof We know that

1.) the basis B4 of the topology Ty induced by the metric d is the collection of open balls in
(de): Bd = {Br(i') | re R+,ZL‘ € X}

2.) there is a countable dense subset D = (2,)peny € X in X.
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3.) by Theorem 5, as 3, is a basis, we know that for all A € T; and z € A there is B,.(2') C (4,
such that =z € B,(z') C A.

We take
B={Bi(xy)|m,neNN}.

Take A€ T and x € A as in 3.). From this condition it follows that it is sufficient to show that
there is a ball B 1 () € B, such that B 1 (xn) C By(2'). Furthermore, if 2/ # z, we can find a
ball of smaller radius around = that also satisfies 3 3.). Hence we can assume that 2’ = x.

To construct our ball we take m € IN, such that 5 > % eSr > % By the density of D there
is 2, € D, such that d(zy,z) < L. Then for every point & € Bi (z5,) we have by the triangle

inequality:
~ - 1 1
d(z,z) < d(Z,xn) + d(zp, x) < p- + <
Hence z € Bi (z,) C B.(z) C A and therefore ( is a countable basis for 7. O
3 Limits

We recall the defintion of infimum and supremum and liminf and limsup. The correspondig
theorems and definitions can be, for example found in Gordon, Real Analysis - A First Course,
2nd edition.

3.1 Infimum and supremum

Definition 1 Let S C R be a non-empty set of real numbers. Suppose S is bounded above. The
number [ is the supremum of S if 8 is an upper bound of S and any number less than f is
not an upper bound of S i.e.

for all b< B thereisan z €S, such that b< z.

We will write 8 = sup(S).

Definition 2 Let S C R be a non-empty set of real numbers. Suppose S is bounded below.
The number « is the infimum of S if « is a lower bound of S and any number greater than «
is not a lower bound of S i.e.

for all a > « thereisan x €5, such that a > z.

We will write a = inf(S).
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3.2 The extended real number line

see Wilkins: The extended real number system.

3.3 Limit superior and limit inferior

We recall the following definitions from real analysis:
Let (an)nenw C R be a sequence. For k > 1 consider the new sequence

by, = sup a,, = sup{ag, Gk11, k12, Qf+3,---}
n>k

Then by, > b1 for all k € IN and therefore limy_, o, by, = infren by € R. We define:

Definition 1 (Limit superior and inferior) We call the limit superior of a sequence

(an)n C R the number

. Def. .. .
lim sup a, =" lim b = inf by.
nelN k—ro0 keN

In a similar fashion we call the limit inferior of a sequence (a,), C R the number

.. Def. .. .
liminfa, =" lim inf a,.
nelN k—oon>k

cos(n)

Example The sequence (an)nen = ( ) N and the sequence (ck)geN
ne

where ¢j, = inf,,>1 ap.

0.59
0.4+
0.39

0.2+

: .f.wv.wwm-m

~0.1

-0.24

-0.37
o

cos(n)

Figure 1: Plot of %(m) (red) and the sequence (an)nen = ( ) N (black) and the sequence
ne

given by ¢ = inf,, > a, (blue).
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Proposition 2 For a sequence (an)nen C R we have that
a) liminf, ey ap < limsup,,c an.

b) limy, o0 ap, exists if and only if liminf,en a,, = limy, ;00 @y, = limsup,,cpy an.

4 Complex analysis

see Beck et al.: A first course in compler analysis.




