
Math 103: Measure Theory and Complex Analysis

Fall 2018

Prerequisites

1 Set Theory

We recall the basic facts about countable and uncountable sets, union and intersection of sets

and images and preimages of functions.

1.1 Countable and uncountable sets

We can compare in�nite sets via bijections or one-to-one correspondences.

De�nition 1 Let I be an arbitrary set.

a) The set I is �nite, if there is a bijective map f : I → {1, 2, 3, . . . , n} for some positive

integer n.

b) The set I is in�nite, if it is not �nite.

c) The set I is countably in�nite, if there is a bijective map f : I → N.

d) The set I is countable, if it is either �nite or countably in�nite.

e) The set I is uncountable, if it is not countable.

We recall:

Theorem 2 A subset of a countably in�nite set is countable.

We have furthermore the important theorem:

Theorem 3 A countable union of countable sets is countable.

proof: It is su�cient to prove the statement for a disjoint union A =
⊎∞

i=1Ai of countably

in�nte sets Ai. This is true as

1.) Each union of sets
⋃∞

i=1Bi can be decomposed into a disjoint union
⊎∞

i=1B
′
i of sets by

removing multiple occurences.

2.) Each �nite set B′i can be extended to an in�nite set B̃i, such that B̃i∩B′k = ∅ for all k 6= i.

3.) If
⊎∞

i=1 B̃i is countably in�nite, then the subset
⋃∞

i=1Bi is countable by Theorem 2.
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So suppose we have a disjoint union
⊎∞

i=1Ai of countably in�nte sets Ai. We list all elements of

A =
⊎∞

i=1Ai:

A1 = {x11, x12, x13, . . . , x1n, . . .}
A2 = {x21, x22, x23, . . . , x2n, . . .}
...

Am = {xm1, xm2, xm3, . . . , xmn, . . .}
...

As the factorization into primes is unique, we know that the set of positive integers

S = {2k · 3n, n, k ∈ N} satis�es:

2k1 · 3n1 = 2k2 · 3n2 ⇔ k1 = k2 and n1 = n2. (*)

Hence the assignment f : S →
⊎∞

i=1Ai , de�ned by f(2k · 3n) = xkn is a well-de�ned map

which is bijective. Hence
⊎∞

i=1Ai is in one-to-one correspondence with a subset of N, which by

Theorem 2 is countable. Hence A =
⊎∞

i=1Ai is also countable. �

Examples 4 N, Z and Q are countable, hence by the previous theorem we know that

Z2 = Z×Z =
⊎
i∈Z

(i,Z) and Q2 = Q×Q =
⊎
q∈Q

(q,Q)

are countable. Using this argument iteratively we have that for �xed n, Zn and Qn are countable.

1.2 Sets and functions

Theorem 1 (De Morgan's Law) Let (Ai)i∈I ⊂ X be a collection of sets in X. If Ac = X\A
for all A ⊂ X, then

a)
(⋃

i∈I Ai

)c
=
⋂

i∈I A
c
i

b)
(⋂

i∈I Ai

)c
=
⋃

i∈I A
c
i

proof a) We have(⋃
i∈I

Ai

)c

= X\{x ∈ X | ∃i ∈ I, such that x ∈ Ai} =

{x ∈ X | ¬(∃i ∈ I, such that x ∈ Ai)} =

{x ∈ X | ∀i ∈ I, x 6∈ Ai} = {x ∈ X | ∀i ∈ I, x ∈ Ac
i} =

⋂
i∈I

Ac
i . �
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b) Similarly(⋂
i∈I

Ai

)c

= X\{x ∈ X | ∀i ∈ I, x ∈ Ai} =

{x ∈ X | ¬(∀i ∈ I, we have that x ∈ Ai)} =

{x ∈ X | ∃i ∈ I, such that x 6∈ Ai} = {x ∈ X | ∃i ∈ I, x ∈ Ac
i} =

⋃
i∈I

Ac
i .�

Lemma 2 (Functions and Sets) Let f : X → Y be a function. Let (Aj)j∈J ⊂ X be a

collection of sets in X. Let furthermore (Bi)i∈I ⊂ Y be a collection of sets in Y and B ⊂ Y .
Then

a) f
(⋂

j∈J Aj

)
⊂
⋂

j∈J f (Aj).

b)
⋃

j∈J f (Aj) = f
(⋃

j∈J Aj

)
.

c) f−1(B)c = f−1(Bc).

d)
⋃

i∈I f
−1 (Bi) = f−1

(⋃
i∈I Bi

)
and

⋂
i∈I f

−1 (Bi) = f−1
(⋂

i∈I Bi

)
.

proof a) We have that

f

⋂
j∈J

Aj

 = {y ∈ Y | y = f(x) and f(x) ∈ f(
⋂
j∈J

Aj)} =

{f(x) ∈ Y | ∀j ∈ J, we have x ∈ Aj}.

Furthermore ⋂
j∈J

f (Aj) = {y ∈ Y | ∀j ∈ J, we have y ∈ f(Aj)} =

{f(x) ∈ Y | ∀j ∈ J, we have f(x) ∈ f(Aj)}.

Now if x ∈ Aj then f(x) ∈ f(Aj) and the �rst set is contained in the second. �

Note We see that the converse is not true by taking f : {1, 2} → {1}, where f(1) = f(2) = 1.
For A1 = {1} and A2 = {2} we get

f(A1 ∩A2) = ∅, but f(A1) ∩ f(A2) = {1}.

b) We know that⋃
j∈J

f (Aj) = {y ∈ Y | ∃j ∈ J, such that y ∈ f(Aj)} =

{f(x) ∈ Y | ∃j ∈ J, such that f(x) ∈ f(Aj)}.
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On the other hand

f

⋃
j∈J

Aj

 = {y ∈ Y | y = f(x) and ∃j ∈ J, such that x ∈ Aj} =

{f(x) ∈ Y | ∃j ∈ J, such that x ∈ Aj}.

But if x ∈ Aj then f(x) ∈ f(Aj) and the second set is contained in the �rst. On the other hand

if f(x) ∈ f(Aj) for some j ∈ J then there is x′, such that f(x) = f(x′) and x′ ∈ Aj for some

j ∈ J . So the �rst set is contained in the second. �

c) We know that⋃
i∈I

f−1 (Bi) = {x ∈ X | ∃i ∈ I, such that x ∈ f−1(Bi)} = {x ∈ X | ∃i ∈ I, such that f(x) ∈ Bi}.

We compare this with

f−1

(⋃
i∈I

Bi

)
= {x ∈ X | f(x) ∈

⋃
i∈I

Bi} = {x ∈ X | ∃i ∈ I, such that f(x) ∈ Bi}

which shows that the sets are equal. We prove the second statement in a similar fashion. �

d) We know that

f−1(B)c = X\f−1(B) = X\{x ∈ X | f(x) ∈ B} = {x ∈ X | f(x) 6∈ B}.

On the other hand we have that

f−1(Bc) = {x ∈ X | f(x) ∈ Bc} = {x ∈ X | f(x) 6∈ B}

and the two sets are equal.

2 Topology

The proofs of the following theorems can be found in Munkres, Topology, 2nd edition, Chapter

2, Section 12,13 and 20.

2.1 Basics

De�nition 1 Let X be a set. A topology on X is a collection T ⊂ P(X) of subsets of X, such

that
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a) ∅ ∈ T and X ∈ T .

b) A,B ∈ T ⇒ A ∩B ∈ T (T is closed under intersection).

c) (Ak)k∈K ⊂ T ⇒
⋃

k∈K Ak ∈ T (T is closed under any union).

In this case the elements of T the open subsets of X and (X, T ) is called a topological space.

Examples T = {∅, X} or T ′ = P(X).

Remark 2 b) implies that T is stable under �nite intersections.

De�nition 3 Let (X, T ) and (X ′, T ′) be topological spaces. A function f : X → X ′ is contin-
uous if

f−1(A′) ∈ T for all A′ ∈ T ′.

De�nition 4 (Basis) Let (X, T ) be a topological space. Then β ⊂ T is a basis for the topology

T if

for all A ∈ T we have that A =
⋃
i∈I

Ai where (Ai)i∈I ⊂ β.

This means that every element in T is a union of elements of β.

Theorem 5 (Basis = neighbourhood basis) β is a basis for the topology T i�

for all A ∈ T and for all x ∈ A ∃ U(x) = U ∈ β, such that x ∈ U ⊂ A.

De�nition 6 (second countable) A topological space (X, T ) is called second countable if

there is a countable basis for its topology.

Example A second countable basis for the usual topology of the real line R is given by the

intervals with rational endpoints.

Proposition 7 If (X, d) is a metric space with a countable dense subset, the topology induced

by the metric is second countable.

proof We know that

1.) the basis βd of the topology Td induced by the metric d is the collection of open balls in

(X, d): βd = {Br(x) | r ∈ R+, x ∈ X}

2.) there is a countable dense subset D = (xn)n∈N ⊂ X in X.
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3.) by Theorem 5, as βd is a basis, we know that for all A ∈ Td and x ∈ A there is Br(x
′) ⊂ βd,

such that x ∈ Br(x
′) ⊂ A.

We take

β = {B 1
m

(xn) | m,n ∈ N}.

Take A ∈ T and x ∈ A as in 3.). From this condition it follows that it is su�cient to show that

there is a ball B 1
m

(xn) ∈ β, such that B 1
m

(xn) ⊂ Br(x
′). Furthermore, if x′ 6= x, we can �nd a

ball of smaller radius around x that also satis�es 3.). Hence we can assume that x′ = x.
To construct our ball we take m ∈ N, such that r

2 >
1
m ⇔ r > 2

m . By the density of D there

is xn ∈ D, such that d(xn, x) < 1
m . Then for every point x̃ ∈ B 1

m
(xn) we have by the triangle

inequality:

d(x̃, x) ≤ d(x̃, xn) + d(xn, x) <
1

m
+

1

m
< r

Hence x ∈ B 1
m

(xn) ⊂ Br(x) ⊂ A and therefore β is a countable basis for T . �

3 Limits

We recall the de�ntion of in�mum and supremum and lim inf and lim sup. The correspondig

theorems and de�nitions can be, for example found in Gordon, Real Analysis - A First Course,

2nd edition.

3.1 In�mum and supremum

De�nition 1 Let S ⊂ R be a non-empty set of real numbers. Suppose S is bounded above. The

number β is the supremum of S if β is an upper bound of S and any number less than β is

not an upper bound of S i.e.

for all b < β there is an x ∈ S, such that b < x.

We will write β = sup(S).

De�nition 2 Let S ⊂ R be a non-empty set of real numbers. Suppose S is bounded below.

The number α is the in�mum of S if α is a lower bound of S and any number greater than α
is not a lower bound of S i.e.

for all a > α there is an x ∈ S, such that a > x.

We will write α = inf(S).
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3.2 The extended real number line

see Wilkins: The extended real number system.

3.3 Limit superior and limit inferior

We recall the following de�nitions from real analysis:

Let (an)n∈N ⊂ R̄ be a sequence. For k ≥ 1 consider the new sequence

bk = sup
n≥k

an = sup{ak, ak+1, ak+2, ak+3, . . .}

Then bk ≥ bk+1 for all k ∈ N and therefore limk→∞ bk = infk∈N bk ∈ R̄. We de�ne:

De�nition 1 (Limit superior and inferior) We call the limit superior of a sequence

(an)n ⊂ R̄ the number

lim sup
n∈N

an
Def.
= lim

k→∞
bk = inf

k∈N
bk.

In a similar fashion we call the limit inferior of a sequence (an)n ⊂ R̄ the number

lim inf
n∈N

an
Def.
= lim

k→∞
inf
n≥k

an.

Example The sequence (an)n∈N =
(
cos(n)

n

)
n∈N

and the sequence (ck)k∈N

where ck = infn≥k an.

Figure 1: Plot of cos(x)
x (red) and the sequence (an)n∈N =

(
cos(n)

n

)
n∈N

(black) and the sequence

given by ck = infn≥k an (blue).



Math 103: Measure Theory and Complex Analysis

Fall 2018

Proposition 2 For a sequence (an)n∈N ⊂ R̄ we have that

a) lim infn∈N an ≤ lim supn∈N an.

b) limn→∞ an exists if and only if lim infn∈N an = limn→∞ an = lim supn∈N an.

4 Complex analysis

see Beck et al.: A �rst course in complex analysis.


