Math 103: Measure Theory and Complex Analysis
 Fall 2018

10/03/18

Lecture 9

2.) $\left.\mu \stackrel{\text { Def. }}{=} \mu^{o}\right|_{\mathcal{M}^{o}}$ is a measure and \mathcal{M}^{o} is a σ algebra

We first prove the claim:
Claim Let $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{M}^{o}$ be a sequence of mutually disjoint sets in \mathcal{M}^{o}. Then

$$
A:=\biguplus_{i \in \mathbb{N}} A_{i} \in \mathcal{M}^{o} \quad \text { and } \quad \mu^{o}(A)=\sum_{i \in \mathbb{N}} \mu^{o}\left(A_{i}\right) .
$$

proof Let $A_{1}, A_{2} \in \mathcal{M}^{o}$ be the first two disjoint sets in A. Then setting $B:=B \cap\left(A_{1} \cup A_{2}\right)$ in the definiton of the measurable set A_{1} we get

$$
\mu^{o}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\quad \text { for all } B \subset X
$$

For the finite union $\biguplus_{i=1}^{n} A_{i} \in \mathcal{M}^{o}$ of disjoint sets $\left(A_{i}\right)_{i=1}^{n} \subset \mathcal{M}^{o}$ is in \mathcal{M}^{o} by part 1.c). By induction we have for all $n \in \mathbb{N}$

$$
\mu^{o}\left(B \cap \biguplus_{i=1}^{n} A_{i}\right)=\quad \text { for all } B \subset X
$$

Hence by the definition of $\biguplus_{i=1}^{n} A_{i}$ as a measurable set we have for all $B \subset X$:

$$
\mu^{o}(B)=
$$

By passing to the limit this implies

$$
\mu^{o}(B) \stackrel{(*)}{\geq}
$$

Here the last two inequalities follow from the countable subadditivity of μ^{o} :
$\sum_{i=1}^{\infty} \mu^{o}\left(B \cap A_{i}\right) \geq \mu^{o}(B \cap A)$ and as $B=(B \cap A) \cup\left(B \cap A^{c}\right)$. Hence in total

$$
\mu^{o}(B)=\mu^{o}(B \cap A)+\mu^{o}\left(B \cap A^{c}\right) \text { for all } B \subset X .
$$

This implies that A is measurable and setting $B=A$ in $\left(^{*}\right)$ the second part of our claim.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

3. $\mu=\left.\mu^{o}\right|_{\mathcal{M}^{o}}$ is complete

By the definition of completeness we have to show that every subset $C \subset A \in \mathcal{M}^{o}$, of a set A of measure zero is measurable and has measure zero, i.e. $\mu(C)=0$. We know that

$$
\begin{equation*}
\mu^{o}(B)=\underbrace{\mu^{o}(A \cap B)}_{=0 \text { by Def. } \mu^{o}, \text { part b) }}+\mu^{o}\left(A^{c} \cap B\right)=\mu^{o}\left(A^{c} \cap B\right) \text { for all } B \subset X . \tag{1}
\end{equation*}
$$

As $B=(C \cap B) \uplus\left(C^{c} \cap B\right)$ we know by the subadditivity of μ^{o}

$$
\mu^{o}(B) \leq
$$

Furthermore as $C \subset A$ we have that $C^{c} \cap B=A^{c} \cap B \uplus\left(C^{c} \cap A \cap B\right)$. Hence

$$
\mu^{o}\left(C^{c} \cap B\right) \leq
$$

In total we have that $\mu^{o}(C \cap B)=0$ and

$$
\mu^{o}(B)=\mu^{o}(C \cap B)+\mu^{o}\left(C^{c} \cap B\right)=\mu^{o}\left(A^{c} \cap B\right) \text { for all } B \subset X
$$

That means that $C \in \mathcal{M}^{0}$ and has measure zero.

Chapter 2-Special measures

Chapter 2.1 - Lebesgue measure on \mathbb{R}

Outline Though we have learned a lot about measures and measurable sets, we still have not defined a nice measure λ on \mathbb{R}, such that $\lambda([a, b])=\ell([a, b])=b-a$. We will do this using a corresponding outer measure λ^{o}. Then we will show that not all sets of $\mathcal{P}(X)$ are measurable with respect to the σ algebra Λ° induced by λ and not all sets of Λ° are Borel sets.

Defintion 1 (Lebesgue measure) Let I, I_{k} denote an open interval in \mathbb{R}. For $A \subset \mathbb{R}$ we set

$$
\lambda^{o}(A):=\inf \left\{\sum_{n \in \mathbb{N}} \ell\left(I_{n}\right) \mid A \subset \bigcup_{n \in \mathbb{N}} I_{n}\right\}
$$

Picture

Math 103: Measure Theory and Complex Analysis Fall 2018

Proposition 2 With the definition above we have
a) λ^{o} is an outer measure on \mathbb{R}. We denote the induced measure $\left.\lambda^{o}\right|_{\Lambda^{o}}$ on Λ^{o} by λ.
b) If I is an interval, then $\lambda(I)=\ell(I)$.
c) For all $a \in \mathbb{R}$ we have that $(a,+\infty) \in \Lambda^{0}$.
proof see H.L. Royden and P.M. Fitzpatrick, Real Analysis, 4th edition, Chapter 2.2.
Corollary $3 \mathcal{B}(\mathbb{R}) \subset \Lambda^{o}$.
proof As $(a,+\infty) \in \Lambda^{o} \Rightarrow$.

Proposition 4 If $E \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then $\lambda^{o}(E+x)=\lambda^{o}(E)$.
If $E \in \Lambda^{o}$ and $x \in \mathbb{R}$ then $E+x \in \Lambda$ and $\lambda(E+x)=\lambda(E)$.
proof Idea: Translated intervals have the same length. Therefore by passing to the inf we can show that $\lambda^{o}(E+x)=\lambda^{o}(E)$. The second part follows from the definition of a measurable set of an outer measure.

Question We know three non-trivial σ algebras on \mathbb{R} :

$$
\mathcal{B}(\mathbb{R}) \subset \Lambda^{o} \subset \mathcal{P}(X) \quad \text { Are those inequalities strict? }
$$

Answer Yes, the Vitali set V is a subset of $\mathcal{P}(X)$ that is not Lebesque measurable. Furthermore there is a subset A of the Cantor set C is a set that is Lebesque measurable, but not in $\mathcal{B}(\mathbb{R})$. We will construct these two examples and prove this statement.

Vitali Set

Let $X=[0,1)$ and define

$$
x \oplus y=\left\{\begin{array}{lll}
x+y \\
x+y-1
\end{array} \quad \text { if } \quad \begin{array}{l}
x+y<1 \\
x+y \geq 1
\end{array} .\right.
$$

This map can be seen as $X=\mathbb{R} \bmod \mathbb{Z}$ and $x \oplus y=x+y \bmod \mathbb{Z}$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Lemma 5 If $E \subset[0,1)$ is in Λ^{o} then $E \oplus y=\{x \oplus y \mid x \in E\} \in \Lambda^{o}$ for any $y \in[0,1)$. Moreover, $\lambda(E \oplus y)=\lambda(E)$.
proof For fixed $y \in[0,1)$ set

$$
\Lambda^{o} \ni E_{1}=\underbrace{E}_{\in \Lambda^{o}} \cap \underbrace{[0,1-y)}_{\in \Lambda^{o}} \text { and } \Lambda^{o} \ni E_{2}=\underbrace{E}_{\in \Lambda^{o}} \cap \underbrace{[1-y, 1)}_{\in \Lambda^{o}}
$$

Then by the additivity of λ we have $\lambda(E)=\lambda\left(E_{1}\right)+\lambda\left(E_{2}\right)$. By construction and Proposition 4 we have that

Hence $E \oplus y$ is measurable and again by the additivity of $\lambda: \lambda(E \oplus y)=\lambda(E)$.
We now define an equivalence relation on $[0,1)$:

$$
x \sim y \Leftrightarrow x-y \in \mathbb{Q}
$$

and denote by $[x]$ the class of x.
Definition (Vitali set) Let $V \subset[0,1)$ be a complete set of representatives. This set is called a Vitali set. Let $\left(q_{i}\right)_{i=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$. with $q_{0}=0$ and set for all i

$$
V_{i}=V \oplus q_{i}
$$

Then
1.) If $i \neq j$ then $V_{i} \cap V_{j}=\emptyset$:

Hence $v_{j}-v_{i} \in \mathbb{Q}$. This means that v_{i} and v_{j} are in the same equivalence class. But there is only one representative per class, hence $v_{i}=v_{j}$ and therefore $r_{i}=r_{j}$.
2.) $\biguplus_{i=0}^{\infty} V_{i}=[0,1)$
3.) $\lambda^{o}(V)=\lambda^{o}\left(V_{0}\right)=\lambda^{o}\left(V_{1}\right)=\ldots$

