10/03/18

Lecture 9

2.) $\mu \stackrel{\text{Def.}}{=} \mu^{o}|_{\mathcal{M}^{o}}$ is a measure and \mathcal{M}^{o} is a σ algebra

We first prove the claim:

Claim Let $(A_i)_{i \in \mathbb{N}} \subset \mathcal{M}^o$ be a sequence of mutually disjoint sets in \mathcal{M}^o . Then

$$A := \biguplus_{i \in \mathbb{N}} A_i \in \mathcal{M}^o \text{ and } \mu^o(A) = \sum_{i \in \mathbb{N}} \mu^o(A_i).$$

proof Let $A_1, A_2 \in \mathcal{M}^o$ be the first two disjoint sets in A. Then setting $B := B \cap (A_1 \cup A_2)$ in the definiton of the measurable set A_1 we get

$$\mu^{o}(B \cap (A_1 \cup A_2)) = \qquad \qquad \text{for all} \quad B \subset X.$$

For the finite union $\biguplus_{i=1}^{n} A_i \in \mathcal{M}^o$ of disjoint sets $(A_i)_{i=1}^{n} \subset \mathcal{M}^o$ is in \mathcal{M}^o by **part 1.c**). By induction we have for all $n \in \mathbb{N}$

$$\mu^o\left(B\cap \biguplus_{i=1}^n A_i\right) = \qquad \qquad \text{for all } B \subset X.$$

Hence by the definition of $\bigcup_{i=1}^{n} A_i$ as a measurable set we have for all $B \subset X$:

$$\mu^{o}(B) =$$

By passing to the limit this implies

$$\mu^o(B) \stackrel{(*)}{\geq}$$

Here the last two inequalities follow from the countable subadditivity of μ^{o} :

 $\sum_{i=1}^{\infty} \mu^{o}(B \cap A_{i}) \ge \mu^{o}(B \cap A)$ and as $B = (B \cap A) \cup (B \cap A^{c})$. Hence in total

$$\mu^{o}(B) = \mu^{o}(B \cap A) + \mu^{o}(B \cap A^{c}) \quad \text{for all} \quad B \subset X$$

This implies that A is measurable and setting B = A in (*) the second part of our claim.

10/03/18

3. $\mu = \mu^{o}|_{\mathcal{M}^{o}}$ is complete

By the definition of completeness we have to show that every subset $C \subset A \in \mathcal{M}^o$, of a set A of measure zero is measurable and has measure zero, i.e. $\mu(C) = 0$. We know that

$$\mu^{o}(B) = \underbrace{\mu^{o}(A \cap B)}_{=0 \text{ by Def. } \mu^{o}, \text{part b}} + \mu^{o}(A^{c} \cap B) = \mu^{o}(A^{c} \cap B) \text{ for all } B \subset X.$$
(1)

As $B = (C \cap B) \uplus (C^c \cap B)$ we know by the subadditivity of μ^o

$$\mu^{o}(B) \leq$$

Furthermore as $C \subset A$ we have that $C^c \cap B = A^c \cap B \uplus (C^c \cap A \cap B)$. Hence

$$\mu^o(C^c \cap B) \le$$

In total we have that $\mu^{o}(C \cap B) = 0$ and

$$\mu^{o}(B) = \mu^{o}(C \cap B) + \mu^{o}(C^{c} \cap B) = \mu^{o}(A^{c} \cap B) \text{ for all } B \subset X.$$

That means that $C \in \mathcal{M}^o$ and has measure zero.

Chapter 2 - Special measures

Chapter 2.1 - Lebesgue measure on $\mathbb R$

Outline Though we have learned a lot about measures and measurable sets, we still have not defined a nice measure λ on \mathbb{R} , such that $\lambda([a,b]) = \ell([a,b]) = b - a$. We will do this using a corresponding outer measure λ^o . Then we will show that not all sets of $\mathcal{P}(X)$ are measurable with respect to the σ algebra Λ^o induced by λ and not all sets of Λ^o are Borel sets.

Definition 1 (Lebesgue measure) Let I, I_k denote an open interval in \mathbb{R} . For $A \subset \mathbb{R}$ we set

$$\lambda^{o}(A) := \inf \{ \sum_{n \in \mathbb{N}} \ell(I_n) \mid A \subset \bigcup_{n \in \mathbb{N}} I_n \}$$

Picture

10/03/18

Proposition 2 With the definition above we have

- a) λ^o is an outer measure on \mathbb{R} . We denote the induced **measure** $\lambda^o|_{\Lambda^o}$ on Λ^o by λ .
- b) If I is an interval, then $\lambda(I) = \ell(I)$.
- c) For all $a \in \mathbb{R}$ we have that $(a, +\infty) \in \Lambda^o$.

proof see H.L. Royden and P.M. Fitzpatrick, Real Analysis, 4th edition, Chapter 2.2.

Corollary 3 $\mathcal{B}(\mathbb{R}) \subset \Lambda^o$.

proof As $(a, +\infty) \in \Lambda^o \Rightarrow$.

Proposition 4 If $E \subset \mathbb{R}$ and $x \in \mathbb{R}$. Then $\lambda^o(E+x) = \lambda^o(E)$. If $E \in \Lambda^o$ and $x \in \mathbb{R}$ then $E + x \in \Lambda$ and $\lambda(E+x) = \lambda(E)$.

proof Idea: Translated intervals have the same length. Therefore by passing to the inf we can show that $\lambda^o(E+x) = \lambda^o(E)$. The second part follows from the definition of a measurable set of an outer measure.

Question We know three non-trivial σ algebras on \mathbb{R} :

 $\mathcal{B}(\mathbb{R}) \subset \Lambda^o \subset \mathcal{P}(X)$ Are those inequalities strict?

Answer Yes, the Vitali set V is a subset of $\mathcal{P}(X)$ that is not Lebesque measurable. Furthermore there is a subset A of the Cantor set C is a set that is Lebesque measurable, but not in $\mathcal{B}(\mathbb{R})$. We will construct these two examples and prove this statement.

Vitali Set

Let X = [0, 1) and define

$$x \oplus y = \begin{cases} x+y & \text{if } x+y < 1\\ x+y-1 & x+y \ge 1 \end{cases}.$$

This map can be seen as $X = \mathbb{R} \mod \mathbb{Z}$ and $x \oplus y = x + y \mod \mathbb{Z}$.

10/03/18

Lemma 5 If $E \subset [0,1)$ is in Λ^o then $E \oplus y = \{x \oplus y \mid x \in E\} \in \Lambda^o$ for any $y \in [0,1)$. Moreover, $\lambda(E \oplus y) = \lambda(E)$.

proof For fixed $y \in [0, 1)$ set

$$\Lambda^{o} \ni E_{1} = \underbrace{E}_{\in \Lambda^{o}} \cap \underbrace{[0, 1-y]}_{\in \Lambda^{o}} \quad \text{and} \quad \Lambda^{o} \ni E_{2} = \underbrace{E}_{\in \Lambda^{o}} \cap \underbrace{[1-y, 1]}_{\in \Lambda^{o}}$$

Then by the additivity of λ we have $\lambda(E) = \lambda(E_1) + \lambda(E_2)$. By construction and **Proposition** 4 we have that

Hence $E \oplus y$ is measurable and again by the additivity of $\lambda : \lambda(E \oplus y) = \lambda(E)$.

We now define an equivalence relation on [0, 1):

 $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$

and denote by [x] the class of x.

Definition (Vitali set) Let $V \subset [0,1)$ be a complete set of representatives. This set is called a **Vitali set**. Let $(q_i)_{i=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap [0,1)$. with $q_0 = 0$ and set for all i

$$V_i = V \oplus q_i$$

Then

1.) If $i \neq j$ then $V_i \cap V_j = \emptyset$:

Hence $v_j - v_i \in \mathbb{Q}$. This means that v_i and v_j are in the same equivalence class. But there is only one representative per class, hence $v_i = v_j$ and therefore $r_i = r_j$.

- 2.) $\biguplus_{i=0}^{\infty} V_i = [0,1)$
- 3.) $\lambda^{o}(V) = \lambda^{o}(V_0) = \lambda^{o}(V_1) = \dots$