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Lecture 8

We now show that if the measure space is complete, all functions in the equivalence class of
a measurable function are measurable.

Lemma 7 Let (X,M, µ) be a complete measure space and f, g : (X,M)→ C be functions, such
that g is measurable and f ∼ g. Then f is also measurable.

proof Let S = {x ∈ X | f(x) 6= g(x)} then Sc = {x ∈ X | f(x) = g(x)}.
If V ⊂ C is an open set. Then

f−1(V ) =

As the measure is complete f−1(V ) ∩ S is measurable as the subset of a set of measure zero.
This means that f−1(V ) is measurable for every open set V ⊂ C. Hence f is measurable. �

Corollary 8 Suppose (X,M, µ) is a complete measure space and (fn)n∈N : (X,M)→ C be
a sequence of measurable functions on X. If f : (X,M)→ C is a function, such that

lim
n→∞

fn(x) = f(x) for almost all x ∈ X

then f is measurable.

proof Set g = lim supn∈NRe(fn) + i · lim supn∈N Im(fn).

�

Proposition 9 Let (X,M, µ) be a complete measure space.

a) If f : (X,M) → [0,∞] is measurable and
∫
A f dµ = 0 , where A ∈ M then f = 0 for

almost all x ∈ A.

b) If f ∈ L1(µ) and
∫
A f dµ = 0 for all A ∈M then f = 0 almost everywhere.

proof a) Let An = {x ∈ A | f(x) ≥ 1
n}. Then

1

n
µ(An) ≤

It follows that {x ∈ A | f(x) 6= 0} = {x ∈ A | f(x) > 0} =
⋃
n∈NAn. By the subbadditivity of

the measure we have that µ(
⋃
n∈NAn) = 0. Hence f = 0 for almost all x ∈ A. �
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b) Let f = u+ iv and set U+ = {x ∈ X | u(x) ≥ 0} ∈ M. Then∫
U+

f dµ =

In a similar fashion we show that u−, v+ and v− are zero almost everywhere. �

Ch. 1.9. Outer measure

Outline In the previous part we started with a σ algebraM⊂ P(X) and de�ned a measure
µ on it. In this part we will construct an outer measure that is de�ned on all subsets of X but
is not a true measure, and then construct a actual measure by restricting the outer measure to
an appropriate σ algebra of measurable sets.

We will start with the de�nition of the outer measure.

De�nition 1 (Outer measure) An outer measure on a set X is a function µo : P(X) →
[0,∞], such that

a) µo(∅) = 0.

b) A ⊂ B ⇒ µo(A) ≤ µo(B). (Monotonicity)

c) µo
(⋃

i∈NAi
)
≤
∑

i∈N µ
o(Ai). (Countable subadditivity)

We now de�ne "measurable sets" and show that they form a σ algebra for µo meaning that they
are indeed measurable in the original sense.

De�nition 2 (measurable sets) Let µo : P(X) → [0,∞] be an outer measure. We say
A ⊂ X is µo measurable if

µo(B) = µo(A ∩B) + µo(Ac ∩B) for all B ⊂ X .

We setMo = {A ⊂ X | A is µo measurable}.
Picture
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Remark 3 Since µo is �nitely subadditive and B = (A ∩ B) ∪ (Ac ∩ B) we know that
µo(B) ≤ µo(A ∩B) + µo(Ac ∩B). Hence we have

A ∈Mo ⇔ µo(B) ≥ µo(A ∩B) + µo(Ac ∩B) for all B ⊂ X.

This inequality is ful�lled if µo(B) =∞. Hence we can restrict ourselves to the sets
B ⊂ X,µo(B) <∞ in the above inequality.

Theorem 5 Let µo : P(X) → [0,∞] be an outer measure. Then Mo is a σ algebra on X

and µ
Def.
= µo|Mo is a complete measure on (X,Mo).

proof We proceed in three steps.

1.) Mo is almost a σ algebra

We show the �rst two properties of a σ algebra and thatMo is closed under �nite unions.

a) Clearly for A = ∅ in the de�nition of a measurable set

µo(B) =

Hence ∅ ∈ Mo and by the symmmetry of the de�nition X ∈Mo.

b) We have to show that A ∈ Mo ⇒ Ac ∈ Mo: This follows again by the symmetry of the
de�nition ofMo with respect to complements.

c) Closure under �nite union: We have to show: A1, A2 ∈ cMo ⇒ A1∪A2 ∈Mo. Fix B ⊂ X.
We know, as A1, A2 ∈Mo:

µo(B) = and

µo(B ∩Ac1)
A2∈Mo

= .

µo(B) = µo(A1 ∩B) + µo(B ∩Ac1 ∩A2) + µo(B ∩Ac1 ∩Ac2)
µo subadd.

≥
= .

The last equation is true as B∩(A1∪A2) = (B∩A1)∪(B∩A2\A1) = (B∩A1)∪(B∩A2∩Ac1).
The �nite subadditivity then follows by induction.


