Math 103: Measure Theory and Complex Analysis Fall 2018

09/29/18

Lecture 8

We now show that if the measure space is complete, all functions in the equivalence class of a measurable function are measurable.

Lemma 7 Let (X, \mathcal{M}, μ) be a complete measure space and $f, g : (X, \mathcal{M}) \to \mathbb{C}$ be functions, such that g is measurable and $f \sim g$. Then f is also measurable.

proof Let $S = \{x \in X \mid f(x) \neq g(x)\}$ then $S^c = \{x \in X \mid f(x) = g(x)\}$. If $V \subset \mathbb{C}$ is an open set. Then

$$f^{-1}(V) =$$

As the measure is complete $f^{-1}(V) \cap S$ is measurable as the subset of a set of measure zero. This means that $f^{-1}(V)$ is measurable for every open set $V \subset \mathbb{C}$. Hence f is measurable. \Box

Corollary 8 Suppose (X, \mathcal{M}, μ) is a complete measure space and $(f_n)_{n \in \mathbb{N}} : (X, \mathcal{M}) \to \mathbb{C}$ be a sequence of measurable functions on X. If $f : (X, \mathcal{M}) \to \mathbb{C}$ is a function, such that

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ for almost all } x \in X$$

then f is measurable.

proof Set $g = \limsup_{n \in \mathbb{N}} \operatorname{Re}(f_n) + i \cdot \limsup_{n \in \mathbb{N}} \operatorname{Im}(f_n)$.

Proposition 9 Let (X, \mathcal{M}, μ) be a complete measure space.

- a) If $f: (X, \mathcal{M}) \to [0, \infty]$ is measurable and $\int_A f \, d\mu = 0$, where $A \in \mathcal{M}$ then f = 0 for almost all $x \in A$.
- b) If $f \in \mathcal{L}^1(\mu)$ and $\int_A f \, d\mu = 0$ for all $A \in \mathcal{M}$ then f = 0 almost everywhere.

proof a) Let $A_n = \{x \in A \mid f(x) \ge \frac{1}{n}\}$. Then

$$\frac{1}{n}\mu(A_n) \le$$

It follows that $\{x \in A \mid f(x) \neq 0\} = \{x \in A \mid f(x) > 0\} = \bigcup_{n \in \mathbb{N}} A_n$. By the subbadditivity of the measure we have that $\mu(\bigcup_{n \in \mathbb{N}} A_n) = 0$. Hence f = 0 for almost all $x \in A$.

Math 103: Measure Theory and Complex Analysis Fall 2018

09/29/18

b) Let f = u + iv and set $U^+ = \{x \in X \mid u(x) \ge 0\} \in \mathcal{M}$. Then

$$\int_{U^+} f \, d\mu =$$

In a similar fashion we show that u^-, v^+ and v^- are zero almost everywhere.

Ch. 1.9. Outer measure

Outline In the previous part we started with a σ algebra $\mathcal{M} \subset \mathcal{P}(X)$ and defined a measure μ on it. In this part we will construct an **outer measure** that is defined on all subsets of X but is not a true measure, and then construct a actual measure by restricting the outer measure to an appropriate σ algebra of measurable sets.

We will start with the definition of the outer measure.

Definition 1 (Outer measure) An **outer measure** on a set X is a function $\mu^o : \mathcal{P}(X) \to [0,\infty]$, such that

- a) $\mu^o(\emptyset) = 0.$
- b) $A \subset B \Rightarrow \mu^{o}(A) \leq \mu^{o}(B)$. (Monotonicity)
- c) $\mu^{o}\left(\bigcup_{i\in\mathbb{N}}A_{i}\right)\leq\sum_{i\in\mathbb{N}}\mu^{o}(A_{i}).$ (Countable subadditivity)

We now define "measurable sets" and show that they form a σ algebra for μ^{o} meaning that they are indeed measurable in the original sense.

Definition 2 (measurable sets) Let $\mu^o : \mathcal{P}(X) \to [0,\infty]$ be an outer measure. We say $A \subset X$ is μ^o measurable if

$$\mu^{o}(B) = \mu^{o}(A \cap B) + \mu^{o}(A^{c} \cap B) \text{ for all } B \subset X$$

We set $\mathcal{M}^o = \{A \subset X \mid A \text{ is } \mu^o \text{ measurable}\}.$ **Picture**

Math 103: Measure Theory and Complex Analysis Fall 2018

09/29/18

Remark 3 Since μ^o is finitely subadditive and $B = (A \cap B) \cup (A^c \cap B)$ we know that $\mu^o(B) \leq \mu^o(A \cap B) + \mu^o(A^c \cap B)$. Hence we have

 $A \in \mathcal{M}^o \Leftrightarrow \mu^o(B) \ge \mu^o(A \cap B) + \mu^o(A^c \cap B)$ for all $B \subset X$.

This inequality is fulfilled if $\mu^o(B) = \infty$. Hence we can restrict ourselves to the sets $B \subset X, \mu^o(B) < \infty$ in the above inequality.

Theorem 5 Let $\mu^o : \mathcal{P}(X) \to [0, \infty]$ be an outer measure. Then \mathcal{M}^o is a σ algebra on X and $\mu \stackrel{\text{Def.}}{=} \mu^o|_{\mathcal{M}^o}$ is a complete measure on (X, \mathcal{M}^o) .

proof We proceed in three steps.

1.) \mathcal{M}^{o} is almost a σ algebra

We show the first two properties of a σ algebra and that \mathcal{M}^{o} is closed under finite unions.

a) Clearly for $A = \emptyset$ in the definition of a measurable set

 $\mu^{o}(B) =$

Hence $\emptyset \in \mathcal{M}^o$ and by the symmetry of the definition $X \in \mathcal{M}^o$.

- b) We have to show that $A \in \mathcal{M}^o \Rightarrow A^c \in \mathcal{M}^o$: This follows again by the symmetry of the definition of \mathcal{M}^o with respect to complements.
- c) Closure under finite union: We have to show: $A_1, A_2 \in cM^o \Rightarrow A_1 \cup A_2 \in \mathcal{M}^o$. Fix $B \subset X$. We know, as $A_1, A_2 \in \mathcal{M}^o$:

$$\begin{split} \mu^{o}(B) &= & \text{and} \\ \mu^{o}(B \cap A_{1}^{c}) &\stackrel{A_{2} \in \mathcal{M}^{o}}{=} & \\ \mu^{o}(B) &= & \mu^{o}(A_{1} \cap B) + \mu^{o}(B \cap A_{1}^{c} \cap A_{2}) + \mu^{o}(B \cap A_{1}^{c} \cap A_{2}^{c}) \\ & \stackrel{\mu^{o} \text{ subadd.}}{\geq} \\ & - & \end{split}$$

The last equation is true as $B \cap (A_1 \cup A_2) = (B \cap A_1) \cup (B \cap A_2 \setminus A_1) = (B \cap A_1) \cup (B \cap A_2 \cap A_1^c)$. The finite subadditivity then follows by induction.