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Lecture 6

As a consequence of the MCT we have:
Theorem 7 Let (fn)n∈N : (X,M) → [0,∞] be a sequence of measurable functions on X such
that

f(x) =
∑
n∈N

fn(x) for all x ∈ X.

Then f is measurable and
∞∑
n=1

∫
X
fn dµ =

∫
X
f dµ =

∫
X

∞∑
n=1

fn dµ .

proof Idea: Setting gN :=
∑N

n=1 fn(x), the sequence (gN )N satis�es the conditions of the
previous theorem. This means that∫

X

∞∑
n=1

fn dµ = lim
N→∞

∫
X
gN dµ

MCT
=

∫
X
f dµ. (1)

It remains to show that the integral and the sum can be exchanged. We have to argue again
with simple functions. By Ch. 1.4. Theorem 3 we know that there are increasing sequences
of simple measurable functions (s1i )i and (s2i )i, such that

lim
i→∞

s1i = f1 and lim
i→∞

s2i = f2

As they satisfy the conditons of the MCT, we know that

lim
i→∞

∫
X
s1i dµ

MCT
=

∫
X
f1 dµ and lim

i→∞

∫
X
s2i dµ

MCT
=

∫
X
f2 dµ.

Then
lim
i→∞

s1i + s2i = f1 + f2.

and by taking the sequence (s1i + s2i )i again by the MCT∫
X
f1+f2 dµ

MCT
= lim

i→∞

∫
X
s1i+s

2
i dµ

Prop. 5
= lim

i→∞

∫
X
s1i dµ+ lim

i→∞

∫
X
s2i dµ

MCT
=

∫
X
f1 dµ+

∫
X
f2 dµ.

Here the inequality in the middle is true, as
∫
X s

1
i + s2i dµ =

∫
X s

1
i dµ+

∫
X s

2
i dµ for all i. In total

we have that ∫
X
f1 + f2 dµ =

∫
X
f1 dµ+

∫
X
f2 dµ.

It follows by induction that
∫
X

∑N
n=1 fn dµ =

∑N
n=1

∫
X fn dµ for anyN ∈ N. Then with Equation

(1) we have that∫
X
f dµ

MCT
= lim

N→∞

∫
X
gN dµ = lim

N→∞

∫
X

N∑
n=1

fn dµ = lim
N→∞

N∑
n=1

∫
X
fn dµ =

∞∑
n=1

∫
X
fn dµ
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Corollary 8 Let (aij)i,j∈N ⊂ R+
0 be a countable subset of R. Taking the counting measure we

obtain
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

Using the MCT we can also prove:
Theorem 9 (Fatou's lemma) Let (fn)n∈N : (X,M)→ [0,∞] be a sequence of measurable

functions on X. Then ∫
X

lim inf
n∈N

fn dµ ≤ lim inf
n∈N

∫
X
fn dµ.

proof We set for all x ∈ X and k ∈ N

gk(x) = inf
n≥k

fn(x).

It follows that

• By Ch. 1.3 Theorem 4 gk is measurable.

• 0 ≤ g1 ≤ g2 ≤ . . . i.e (gk)k is an increasing sequence.

• lim
k→∞

gk = lim inf
n∈N

fn

Hence the conditions of the MCT are satis�ed and we conclude

lim
k→∞

∫
X
gk dµ =

∫
X

lim inf
n∈N

fn dµ .

Furthermore for all k ∈ N we have that

gk ≤ fk ⇒
∫
X
gk dµ ≤

∫
X
fk dµ⇒ lim inf

k

∫
X
gk dµ ≤ lim inf

k

∫
X
fk dµ. (*)

But as the limit exists we have that lim infk
∫
X gk dµ = limk→∞

∫
X gk dµ =

∫
X lim infn fn dµ.

Therefore ∫
X

lim inf
n

fn dµ = lim
k→∞

∫
X
gk dµ

(∗)
≤ lim inf

n

∫
X
fn dµ.

Note 9 The inequality can be strict: Let E,F ∈M, such that E∩F = ∅ and µ(E) > 0, µ(F ) > 0.
Set

fn =

{
1E
1F

if
n even
n odd

.

Then lim infn∈N fn = 0 but lim infn∈N
∫
X fn dµ = min{µ(E), µ(F )} > 0.



Math 103: Measure Theory and Complex Analysis

Fall 2018

09/24/18

We can also obtain new measures by integrating positive functions.

Theorem 10 Let f : (X,M)→ [0,∞] be a measurable function on X. Then

ϕ(E) =

∫
E
f dµ

de�nes a measure on (X,M). Furthermore for any measurable function g : (X,M)→ [0,∞] we

have

∫
X
g dϕ =

∫
X
gf dµ.

proof Idea for the �rst part: We use Theorem 7 which is a consequence of the MCT.
To this end we observe that

∫
B fdµ =

∫
X f · 1Bdµ.

Clearly ϕ(∅) = 0 < ∞, so the �rst condition for a measure is ful�lled. It remains to show that
ϕ is countably additive. Let (Bk)k∈N be a collection of mutually disjoint elements of M and
B =

⊎
k∈NBk, then

ϕ(B) =

∫
B
fdµ =

∫
X
f · 1B dµ

B=
⊎

k∈NBk
=

∫
X

∞∑
k=1

f · 1Bk
dµ

Thm. 7
=

∞∑
k=1

∫
X
f · 1Bk

dµ =
∞∑
k=1

∫
Bk

f dµ =
∞∑
k=1

ϕ(Bk).

Idea for the second part: The statement is true for nnsfs, then it is true for functions.
We start with the simple case where g = 1A for A ∈M. In this case we verify:∫

X
1A dϕ

Def.
∫

= ϕ(A)
Def. ϕ

=

∫
A
f dµ =

∫
X
f · 1A dµ.

By linearity the result is also true for nnsfs (*). Finally, a function g as in the theorem can be
approximated by an increasing sequence of nnnsfs (sk)k, such that limk→∞ sk = g. We conclude∫

X
g dϕ

MCT
= lim

k→∞

∫
X
sk dϕ

(∗)
= lim

k→∞

∫
X
sk · f dµ

MCT
=

∫
X
g · f dµ.

Here the last equation follows as the sequence (sk · f)k approximates g · f . �

Remark Note that µ(E) = 0 implies that ϕ(E) = 0 (recall that 0 · ∞ = 0). In this case
we say that ϕ is absolutely continuous with respect to µ and write ϕ� µ.
Under this condition the converse of the theorem is also true, i.e. there is a function f , such that
for all E ∈M

ϕ(E) =

∫
E
f dµ.
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This is the Radon-Nikodym Theorem which we will prove later.

Ch. 1.7 Integration of complex functions

Outline: We extend integration to complex functions. The key observation is that every complex
function f = u+ i · v can be written as

f = (u+ − u−) + i · (v+ − v−)

where u+(x) = max{0, u(x)} and u−(x) = −min{0, u(x)}. Therefore all functions on the right
hand side are real valued and positive.

De�nition 1 (Lebesgue integrable functions) Let (X,M, µ) be a measure space. We call

L1(µ) = {f : (X,M)→ C | f measurable ,

∫
X
|f | dµ <∞}

the set of Lebesgue integrable functions.

Note 2 By Ch.1.3 Corollary 17 we have that f = u+ i · v measurable ⇒ |f | measurable.

We still have not de�ned integration, in a natural way we set

De�ntion 3 (Integration) If f = u+ i · v ∈ L1(µ) and E ∈M, then∫
E
f dµ =

∫
E
u+ dµ−

∫
E
u− dµ+ i ·

(∫
E
v+ dµ−

∫
E
v− dµ

)
. (2)

If g : (X,M)→ R̄ is measurable and
∫
E g

+ dµ <∞ or
∫
E g
− dµ <∞ , then we set∫

E
g dµ =

∫
E
g+ dµ−

∫
E
g− dµ.

Note 4 All integrals in (2) are �nite. We have, for example:

u+ ≤ |u| ≤ |f | ⇒
∫
E
u+ dµ ≤

∫
E
|f | dµ ≤ ∞.

We now prove that L1(µ) is a vector space. To this end it is su�cient to show that L1(µ) is a
subspace of the vector space of complex valued functions. Clearly 0 ∈ L1(µ). Hence all we have
to show is that it is closed under addition and scalar multiplication.
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Theorem 5 (L1(µ) is a vector space) If f, g ∈ L1(µ) and a, b ∈ C. Then

a · f + b · g ∈ L1(µ) and

∫
X

(a · f + b · g) dµ = a ·
∫
X
f dµ+ b ·

∫
X
g dµ.

proof That a · f + b · g is measurable follows from Ch. 1.3 Corollary 17. We now prove that∫
X |a · f + b · g| dµ ≤ ∞:
By Ch.1.6 Proposition 4, Ch.1.6. Theorem 7 and the 4 6= we have that

|a · f + b · g|
46=
≤ |a · f |+ |b · g| ⇒

∫
X
|a · f + b · g| dµ ≤

∫
X
|a · f |+ |b · g| dµ Ch.1.6.Th. 7

=∫
X
|a · f | dµ+

∫
X
|b · g| dµ Ch.1.6.Prop. 4c)

= |a| ·
∫
X
|f | dµ︸ ︷︷ ︸
<∞

+|b| ·
∫
X
|g| dµ︸ ︷︷ ︸
<∞

.

Hence the integral is �nite.
To prove the second equation we use the identity

f = (u+ − u−) + i · (v+ − v−)

The idea is to reduce all possible cases to real valued positive functions. For this case the linearity
of the integral follows from Ch.1.6. Prop. 4 c) and Theorem 7. A full proof can be found in
Rudin: Real and complex analysis, 2nd edition, pg. 25,26. �

As for Riemann integrable functions we have:

Theorem 6 For f ∈ L1(µ) we have

|
∫
X
f dµ| ≤

∫
X
|f | dµ.

proof We know that C 3
∫
X f dµ = r · eiθ ⇒ |

∫
X f dµ| = r. Setting α = e−iθ we then have

|
∫
X
f dµ| = r = (r · eiθ)︸ ︷︷ ︸∫

X f dµ

· e−iθ︸︷︷︸
=α

= α ·
∫
X
f dµ =

∫
X
α · f dµ =

∫
X

Re(α · f) dµ + i ·
∫
X

Im(α · f) dµ︸ ︷︷ ︸
=0 as |

∫
X f dµ|=r∈R

=

∫
X

Re(α · f)+ dµ−
∫
X

Re(α · f)− dµ ≤∫
X

Re(α · f)+ dµ ≤
∫
X
|α · f | dµ |α|=1

=

∫
X
|f | dµ.


