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Lecture 6

As a consequence of the MCT we have:
Theorem 7 Let (fn)nen : (X, M) — [0,00] be a sequence of measurable functions on X such
that

f@) =" falx) forall z e X.

nelN

Then f is measurable and Z/ fndu = / fdu= / an du .
n=1 X X Xn:l

proof Idea: Setting gy = Z,]j:l fn(x), the sequence (gn)n satisfies the conditions of the
previous theorem. This means that

> . MCT
[ Y tdu=Jim [ oy an™ [ fap. 1
X = = ) x be

It remains to show that the integral and the sum can be exchanged. We have to argue again
with simple functions. By Ch. 1.4. Theorem 3 we know that there are increasing sequences
of simple measurable functions (s}); and (s?);, such that

lim s; = f; and lim s? = fy
1—00 1—00

As they satisfy the conditons of the MCT, we know that

lim #w%?/ﬁWthm ﬁ@Wﬁ/ﬁm
X X

i—oo Jx =00 Jx
Then
lim 511 + s? = f1+ fo.
1—00
and by taking the sequence (s} + s?); again by the MCT

/ fit+fodu MET lim / st+s?dp Prop. 3 lim s} du+ lim s2dp Mot / fi d,u—i—/ fadu.
X 1—00 X 1—00 X X X

1—00 X

Here the inequality in the middle is true, as [ s} +s?dpu = [y s du+ [y s? dp for all i. In total

we have that
/f1+f2du—/f1du+/f2dﬂ.
X X X

It follows by induction that [ SN fedp =30 Jx fndpfor any N € IN. Then with Equation
(1) we have that

N N
MCT . L L B
L&f@ _AgQAﬂNW_JEQLgﬂhwaE&éwéﬁM”_

i/and,u O

n=1
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Corollary 8 Let (a;j)ijen C IR(J)r be a countable subset of R. Taking the counting measure we

obtain
o o0 o0 oo
DD w =)

i=1 j=1 j=1i=1

Using the MCT we can also prove:
Theorem 9 (Fatou’s lemma) Let (f,)nen : (X, M) — [0, 00] be a sequence of measurable

functions on X. Then
liminf f, dp < liminf ndu.
J gt < it | g

proof Weset forall z € X and k € IN

gr(@) = inf f,(a).

It follows that
e By Ch. 1.3 Theorem 4 g;, is measurable.
e 0<g; <go<...ie(gg)k is an increasing sequence.
T i inf
* Jm gr = liminf fn

Hence the conditions of the MCT are satisfied and we conclude

lim grdp = / liminf f, dup|.
k—oo Jx x nelN

Furthermore for all &k € IN we have that
w<hi= [gedn< [ fedu=timint [ gedu < tmint [ e (9
X X k X k X

But as the limit exists we have that liminfy [ gr dp = limp oo [y grdp = [ liminf, f, dp.
Therefore

(*)
/ liminf f,, dp = lim / grdp < liminf/ fndp. O
x " k—oo Jx nooJx
Note 9 The inequality can be strict: Let E, F' € M, such that ENF = () and pu(E) > 0, u(F) > 0.

Set
_J1g .. n even
fn = { 1r if n odd

Then liminf,en fn = 0 but liminfpew [y fn dp = min{p(E), u(F)} > 0.
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We can also obtain new measures by integrating positive functions.

Theorem 10 Let f: (X, M) — [0,00] be a measurable function on X. Then

o(E) Z/Efdu

defines a measure on (X, M). Furthermore for any measurable function g : (X, M) — [0, co] we

have/gdgpz/ gf du.
X X

proof Idea for the first part: We use Theorem 7 which is a consequence of the MCT.
To this end we observe that [5 fdu = [y f - 1pdp.

Clearly ¢(0) = 0 < oo, so the first condition for a measure is fulfilled. It remains to show that
¢ is countably additive. Let (By)rew be a collection of mutually disjoint elements of M and
B= Lﬂke]N By, then

B=l§), . B > m.
wmzéﬂw=éﬂhwu EWﬁLZymmwﬁg7

k=1
;/Xf-llsk dqu/kaduzkzlek).

Idea for the second part: The statement is true for nnsfs, then it is true for functions.
We start with the simple case where g = 1 4 for A € M. In this case we verify:

(/1Ad¢Dif¢QQmi¢/fdﬂz/dﬂﬂAdM
X A X

By linearity the result is also true for nnsfs (*). Finally, a function g as in the theorem can be
approximated by an increasing sequence of nnnsfs (sg)g, such that limg_,o s = g. We conclude

/gdgoMgT lim / skdw(;) lim / sk-fd,uMgT/ g- fdu.
X k—o0 X k—o0 X X

Here the last equation follows as the sequence (s - f)r approximates g - f. O

Remark Note that u(E) = 0 implies that ¢(E) = 0 (recall that 0 - co = 0). In this case
we say that ¢ is absolutely continuous with respect to p and write ¢ < pu.

Under this condition the converse of the theorem is also true, i.e. there is a function f, such that
for all E € M

o(E) = /E fdp.
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This is the Radon-Nikodym Theorem which we will prove later.

Ch. 1.7 Integration of complex functions

Outline: We extend integration to complex functions. The key observation is that every complex
function f = w4+ -v can be written as

f=@r—u)+i- (vt —v7)

where u™(z) = max{0,u(z)} and v~ (z) = —min{0, u(x)}. Therefore all functions on the right
hand side are real valued and positive.

Definition 1 (Lebesgue integrable functions) Let (X, M, 1) be a measure space. We call

LYp)={f:(X,M)— C| f measurable ,/X |f] dp < oo}
the set of Lebesgue integrable functions.
Note 2 By Ch.1.3 Corollary 17 we have that f = u + ¢ - v measurable = |f| measurable.
We still have not defined integration, in a natural way we set

Defintion 3 (Integration) If f =u +i-v € £(u) and E € M, then

Af@:[ﬁﬂm—égnm+ﬁ(ékuiéww@. 2)

If g : (X, M) — R is measurable and [, g™ du < 0o or [ g~ du < oo, then we set

/gm:/jﬂm/gww
E E E

Note 4 All integrals in (2) are finite. We have, for example:
+ +
w <<= [ utda< [ Inldn <.
E E

We now prove that £!(y) is a vector space. To this end it is sufficient to show that £!(u) is a
subspace of the vector space of complex valued functions. Clearly 0 € £1(u). Hence all we have
to show is that it is closed under addition and scalar multiplication.
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Theorem 5 (L£!(u) is a vector space) If f,g € £!(1) and a,b € C. Then

a-f4+b-geL(p) and Aﬁwf+ﬁ~mdu:al£fdu+b¥£gdw

proof That a- f +b- g is measurable follows from Ch. 1.3 Corollary 17. We now prove that

Jxla-f+0b-g] du < oo
By Ch.1.6 Proposition 4, Ch.1.6. Theorem 7 and the /A # we have that

A# Ch.1.6.Th. 7
a-f+b-g < a-f|+|b-g:»/xwa-f+b-g| du</X|a-f|+|b~g| dy O

Ch.1.6.Prop. 4c)
/Ia-f\ du+/ b g dp S1OEEP |a|-/ If!du+\b~/ 9l du.
X X X X
i —_—
<oo <oo

Hence the integral is finite.
To prove the second equation we use the identity

f=@r—u)+i-(vF—v")

The idea is to reduce all possible cases to real valued positive functions. For this cage the linearity
of the integral follows from Ch.1.6. Prop. 4 c¢) and Theorem 7. A full proof can be found in
Rudin: Real and complex analysis, 2nd edition, pg. 25,26. ]

As for Riemann integrable functions we have:

Theorem 6 For f € £L'(11) we have

[ ranl< [ 1fldn

proof We know that C 3 [y fdu=r-e? = | [\ fdu| =r. Setting o = e~ we then have

\Afwbr::&jg<§:méfwzéajw:

Sx Ffdw
/Re(a~f)du + i /Im(a‘f)du =
X X

=0 as | [y fdul=reR

J Rt = [ Reta- gy du<

X

[ et aus [ o an ™S [ ipan o




