09/21/18

Lecture 5

Chapter 1.6 Integration

Outline: A function is Riemann integrable if it can be "approximated" by step functions. A function is Lebesque integrable if it can be "approximated" by simple functions. In the following section we we assume that (X, \mathcal{M}, μ) is a measure space and μ is a positive measure. We start with the definition of integration for simple functions.

Prelude: Arithmetic in $\overline{\mathbb{R}}$

Outline To define integration properly we have to deal with functions that take values in $\{\pm \infty\}$. To make this work we have to set a few conventions.

Definition 1 On $[0, \infty] = [0, +\infty] = \subset \overline{\mathbb{R}}$ we define:

- a) Addition: $a + \infty = \infty + a = \infty$ if $0 \le a \le \infty$.
- b) Multiplication:

$$a \cdot \infty = \infty \cdot a = \begin{cases} \infty & \text{if } 0 < a \le \infty \\ 0 & \text{if } a = 0 \end{cases}.$$

Note One verifies that with this definition in $([0, \infty], +, \cdot)$

- + and \cdot are commutative and associative operations.
- In $([0,\infty],+,\cdot)$ the distributive laws hold.
- $a + b = a + c \Rightarrow b = c$ for $a < \infty$ $a \cdot b = a \cdot c \Rightarrow b = c$ for $0 < a < \infty$
- If $(a_n)_n$ and $(b_n)_n$ are increasing sequences in $[0, \infty]$, such that

$$\lim_{n \to \infty} a_n = a \text{ and } \lim_{n \to \infty} b_n = b \text{ then } \lim_{n \to \infty} a_n \cdot b_n = a \cdot b.$$

The last statement together with Ch.1.3 Theorem 4 and Ch.1.4 Theorem 3 implies that

Theorem 2 $f, g: (X, \mathcal{M}) \to [0, \infty]$ measurable then

$$f + g$$
 and $f \cdot g$ measurable.

09/21/18

Picture Sketch the function $3 \cdot \mathbb{1}_A$ and the function $2 \cdot \mathbb{1}_B$ and $3 \cdot \mathbb{1}_A + 2 \cdot \mathbb{1}_B$ for some $A, B \subset \mathbb{R}$.

proof of Theorem 2

Integration of simple functions

Definition 3 (Integration) Let $s: X \to [0, \infty)$ be measurable simple function in the form

$$s = \sum_{i=1}^{n} a_i \cdot \mathbb{1}_{A_i}$$
 where $A_i \in \mathcal{M}$ for all i .

Then for s we define integration in the natural way: If $E \in \mathcal{M}$ then

$$\int_E s \, d\mu \stackrel{\text{Def.}}{=} \sum_{i=1}^n a_i \cdot \mu(A_i \cap E). \quad \text{(Int. of simple functions)}$$

If $f: X \to [0,\infty]$ is measurable and $E \in \mathcal{M}$ then we define

$$\int_{E} f \, d\mu \stackrel{\text{Def.}}{=} \sup \left\{ \int_{E} s \, d\mu \mid s \text{ simple }, 0 \le s \le f \right\}. \quad \text{(Int. of pos. measurable functions)}$$

This integral is called the **Lebesgue integral of** f over E with respect to the measure μ . Its value is in $[0, \infty]$.

The following propositions are immediate consequences of the definitions.

Proposition 4 Let $f, g: (X, \mathcal{M}) \to [0, \infty]$ be measurable functions and $E \in \mathcal{M}$. Then

- a) If $f \leq g$, then $\int_E f \, d\mu \leq \int_E g \, d\mu$ (Monotonicity for functions)
- b) If $A \subset B$, then $\int_A f \, d\mu \leq \int_B f \, d\mu$. (Monotonicity for sets)
- c) If $0 \le c < \infty$ is a constant, then $\int_E c \cdot f \, d\mu = c \cdot \int_E f \, d\mu$.
- d) If $f|_E = 0$, then $\int_E f d\mu = 0$ even if $\mu(E) = \infty$. If $\mu(E) = 0$ then $\int_E f d\mu = 0$ even if $f|_E = \infty$ ($0 \cdot \infty = \infty \cdot 0 = 0$).
- e) $\int_E f \, d\mu = \int_X f \cdot \mathbb{1}_E \, d\mu$

proof We only prove a) and b) and leave the rest as an exercise.

a) We recall that

$$\int_E f \, d\mu = \sup\left\{\int_E s \, d\mu \mid s \text{ simple }, 0 \le s \le f\right\}.$$

By definition of g we know that $s \leq f \leq g \Rightarrow s \leq g$ hence

b) If $A \subset B$, we note that for any measurable simple function $s: X \to [0, \infty)$ we have that

$$\int_A s \, d\mu = \sum_{i=1}^n a_i \cdot \mu(A_i \cap A) =$$

To later prove the additivity of the integral for functions, we first prove it for nonnegative simple functions.

09/21/18

Proposition 5 Let $s, t : (X, \mathcal{M}) \to [0, \infty)$ be two nonnegative simple functions (nnsfs). For $E \in \mathcal{M}$ we define

$$\varphi(E) = \int_E s \, d\mu.$$

Then φ is a measure on \mathcal{M} and

$$\int_X s + t \, d\mu = \int_X s \, d\mu + \int_X t \, d\mu. \qquad \text{(Additivity of integration for nnsfs)}$$

proof We know that $s = \sum_{i=1}^{n} a_i \cdot \mathbb{1}_{A_i}$, where $0 < a_i < \infty$. Furthermore $\varphi(\emptyset) = 0 < \infty$. It remains to show that φ is countably additive. Let $(B_k)_{k \in \mathbb{N}}$ be a collection of mutually disjoint elements of \mathcal{M} and $B = \biguplus_{k \in \mathbb{N}} B_k$, then

$$\varphi(B) =$$

To prove the second part let $t = \sum_{j=1}^{m} c_j \cdot \mathbb{1}_{C_j}$, where $0 < c_j < \infty$. We consider t and s on a common refinement: set $E_{ij} = A_i \cap C_j$. Then

Picture

As the statement is true on all $(E_{ij})_{i,j}$, it is true on X by the first part of the proposition. \Box

The definition of measurable sets and measures allows us to easily deal with limits.

Theorem 6 (Lebesgue's Monotone Convergence Theorem (MCT)) Let $(f_n)_{n \in \mathbb{N}} : (X, \mathcal{M}) \to [0, \infty]$ be a sequence of measurable functions on X such that for all $x \in X$

- a) $0 \le f_1(x) \le f_2(x) \le \ldots \le \infty$
- b) $\lim_{n\to\infty} f_n(x) = f(x)$ i.e. $f_n \stackrel{n\to\infty}{\to} f$ pointwise.

Then f is measurable and $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$.

proof We note that by **Ch.1.3 Theorem 4** $f = \sup_n f_n$ is measurable and therefore integrable. We show:

1.) $(\int_X f_n d\mu)_n$ has a limit which is smaller than $\int_X f d\mu$

Let $I_n = \int_X f_n d\mu$. Since by **Proposition 4 a**) we know that

we know that $(I_n)_n$ is an increasing sequence which attains its limit I in $[0,\infty]$, i.e.

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \lim_{n \to \infty} I_n = I \quad \text{and} \tag{1}$$

As $f_n \leq f$ for all $n \in \mathbb{N}$ we know, again by **Proposition 4 a**) that

It remains to show:

2.) $\int_X f d\mu \leq I = \lim_{n \to \infty} \int_X f_n d\mu$

Idea: $\int_X f d\mu = \sup\{\int_X s d\mu \mid s \text{ simple}, 0 \le s \le f\}$. We have to look at those simple functions.

Let $s: X \to [0, \infty)$ be a simple measurable functions, such that $0 \le s \le f$ and let $c \in (0, 1)$ be a fixed constant. We define for all $n \in \mathbb{N}$

$$E_n = \{ x \in X \mid f_n(x) \ge c \cdot s(x) \}.$$
 Then

09/21/18

- E_n is measurable.
- $E_1 \subset E_2 \subset \ldots$ as $(f_n)_n$ is an increasing sequence of functions.
- $X = \bigcup_{n \in \mathbb{N}} E_n$ as for a fixed $x \in X$ we have that $f(x) > c \cdot s(x)$ and $\lim_{n \to \infty} f_n(x) = f(x)$. Furthermore for $\varphi(E) = \int_E s \, d\mu$ we have as in **Proposition 5**:

As φ is a measure we have by **Ch.1.5 Theorem 2 d**) for the left hand side and the fact $X = \bigcup_{n \in \mathbb{N}} E_n$: for all $c \in (0, 1)$:

As this is true for all $0 \leq s \leq f$ it is true for the supremum

Hence in total we have proven our claim.