Math 103: Measure Theory and Complex Analysis
 Fall 2018

09/19/18

Lecture 4

Chapter 1.4 Simple functions

Abstract

Aim: A function is Riemann integrable if it can be approximated with step functions. A function is Lebesque integrable if it can be approximated with measurable simple functions. A measurable simple function is similar to a step function, just that the supporting sets are elements of a σ algebra.

Picture

Definition 1 (Simple functions) A function $s: X \rightarrow \mathbb{C}$ is called a simple function if it has finite range. We say that s is a non-negative simple function (nnsf) if $s(X) \subset[0,+\infty)$.

Note 2 If $s(X) \neq\{0\}$, then $s(X)=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ and let $A_{i}=\left\{x \in X \mid s(x)=a_{i}\right\}$. Then s is measurable if and only if $A_{i} \in \mathcal{M}$ for all $i \in\{1,2, \ldots, n\}$. In this case we have that

$$
\begin{equation*}
s=\sum_{i=1}^{n} a_{i} \cdot \mathbb{1}_{A_{i}} . \tag{1}
\end{equation*}
$$

We can furthermore assume that the $\left(A_{i}\right)_{i}$ are mutually disjoint. This representation as a linear combination of characteristic functions is unique, if the $\left(a_{i}\right)_{i}$ are distinct and non-zero. In this case we call it the standard representation of s.

Theorem 3 (Approximation by simple functions) For any function $f:(X, \mathcal{M}) \rightarrow[0,+\infty]$, there are nnsfs $\left(s_{n}\right)_{n \in \mathbb{N}}$ on X, such that
a) $0 \leq s_{1} \leq s_{2} \leq \ldots \leq f$.
b) For all $x \in X$, we have $\lim _{n \rightarrow \infty} s_{n}(x)=f(x)$.

Furthermore, if f is measurable, then the $\left(s_{n}\right)_{n}$ can be chosen measurable as well.

Math 103: Measure Theory and Complex Analysis Fall 2018

proof Let $\varphi_{n}:[0,+\infty] \rightarrow \mathbb{R}$ be the function defined in the following way: let $k_{n}(x)=k$ be the unique integer, such that

$$
k \cdot 2^{-n} \leq x \leq(k+1) \cdot 2^{-n} \text { and set } \varphi_{n}(x):=\left\{\begin{array}{lll}
k \cdot 2^{-n} & \text { if } & 0 \leq x<n \tag{2}\\
n & & n \leq x \leq \infty
\end{array}\right.
$$

Example Sktech φ_{2} and φ_{3}.

Then $\varphi_{n}:[0,+\infty] \rightarrow \mathbb{R}$ is a Borel map and

$$
0 \leq \varphi_{1}(x) \leq \varphi_{2}(x) \leq \varphi_{3}(x) \ldots \leq x \text { for all } x \in \mathbb{R}
$$

In fact, if $x \in[0, n]$ then by the definition of $k_{n}(x)=k$ and φ_{n} in (2) we have that

$$
x-2^{-n} \leq \varphi_{n}(x) \leq x \text { hence } \lim _{n \rightarrow \infty} \varphi_{n}=i d
$$

We now set $s_{n}=\varphi_{n} \circ f$.
Write out $s_{n}=\varphi_{n}(f(x))$ and sketch s_{5} for $f(x):=x^{2}$.

Since φ_{n} is Borel, we know that s_{n} is measurable if f is measurable and a) and b) are easily verified.

Math 103: Measure Theory and Complex Analysis Fall 2018

Chapter 1.5 Measures

Aim: By given each element of a σ algebra a weight, we can define a measure. All we need is that the measure is countably additive. This is the last step to define integration.

Definition 1 (Measure) Let (X, \mathcal{M}) be a measurable space.
a) A function $\mu: \mathcal{M} \rightarrow[0,+\infty] \subset \overline{\mathbb{R}}$ is called a positive measure if it is countably additive, i.e. if $\left(A_{i}\right)_{i \in \mathbb{N}}$ is a collection of mutually disjoint elements of \mathcal{M}, then

$$
\mu\left(\biguplus_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)
$$

To avoid trivialities, we also assume that there is an $A \in \mathcal{M}$, such that $\mu(A)<\infty$.
b) A space (X, \mathcal{M}, μ) is called a measure space.
c) A function $\mu: \mathcal{M} \rightarrow \mathbb{C}$ that is countably additive is called a complex measure.

Note If not mentioned otherwise we assume in the following that a measure is a positive measure.

Theorem 2 (Properties of $\mu)$ Let (X, \mathcal{M}, μ) be a measure space. Then
a) $\mu(\emptyset)=0$.
b) If $A \subset B$ then $\mu(A) \leq \mu(B)$.
c) If $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{M}$ and

$$
A_{1} \subset A_{2} \subset A_{3} \subset \ldots \text { and } A=\bigcup_{n \in \mathbb{N}} A_{n}
$$

then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$.
d) If $\left(A_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{M}$ and $\mu\left(A_{1}\right)<\infty$. If furthermore

$$
A_{1} \supset A_{2} \supset A_{3} \supset \ldots \quad \text { and } \quad A=\bigcap_{n \in \mathbb{N}} A_{n}
$$

then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu(A)$.

Math 103: Measure Theory and Complex Analysis Fall 2018

proof
a) $\mu(\emptyset)=0$: Take $A \in \mathcal{M}$, such that $\mu(A)<\infty$. Then
b) If $A \subset B$ then $\mu(A) \leq \mu(B)$:
c) Idea: We divide A into a telescoping sum of sets:
d) Idea: We divide A_{1} into a telescoping sum of sets:

In total this settles the proof of the theorem.
Examples We give a few simple examples. Let X be a set and $\mathcal{M}=\mathcal{P}(X)$.
a) Counting measure: For any $E \subset X$ we set

$$
\mu(E)=\left\{\begin{array}{lll}
+\infty & \text { if } & \#(E)=+\infty \\
n & & \#(E)=n
\end{array} .\right.
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

b) Unit mass concentrated at x_{0} : For fixed $x_{0} \in X$ we set

$$
\mu(E)=\left\{\begin{array}{lll}
1 & \text { if } & \begin{array}{l}
x_{0} \in E \\
x_{0} \notin E
\end{array}
\end{array} .\right.
$$

c) The hypothesis that $\mu\left(A_{1}\right)<\infty$ can not be dropped in Theorem 2, part d): For $X=\mathbb{N}$ let μ be the counting measure. Let $A_{n}=\{k \in \mathbb{N} \mid k \geq n\}$. Then

$$
A=\bigcap_{n=1}^{\infty} A_{n}=\emptyset \Rightarrow \mu(A)=0 \text { but } \mu\left(A_{n}\right)=\infty \text { for all } n \in \mathbb{N} .
$$

Hence $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \neq \mu(A)$.

