09/17/18

Lecture 3

Aim: Create a good theory of measure and measurable sets.

Proposition 15 Suppose that $u, v : (X, \mathcal{M}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are measurable and that $\Phi : \mathbb{R}^2 \to Y$ is continuous. Then the function

$$h: (X, \mathcal{M}) \to (Y, \mathcal{B}(Y)), x \mapsto h(x) = \Phi(u(x), v(x))$$
 is measurable.

Picture

proof It is sufficient to show that the map

$$f: (X, \mathcal{M}) \to (\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2)), x \mapsto f(x) = (u(x), v(x))$$

is measurable. Then $h = \Phi \circ f$ is a composition of measurable functions and therefore measurable. To see that f is measurable we recall that the open rectangles with endpoints in \mathbb{Q}^2 form a countable basis β of the topology of \mathbb{R}^2 . By **Lemma 14** it is therefore sufficient to show that for all $R = (a_1, a_2) \times (b_1, b_2) \in \beta$ we have that $f^{-1}(R) \in \mathcal{M}$. But

In total f is a measurable function which implies that $h = \Phi \circ f$ is measurable.

Corollary 16 Suppose that $f, g: (X, \mathcal{M}) \to \mathbb{R}$ are measurable. Then

 $f \pm g$, $f \cdot g$ and $f + i \cdot g$ are measurable.

proof (With u = f, v = g) we take the continuous functions

Then the corollary follows from our proposition.

Corollary 17 Suppose that $f, g: (X, \mathcal{M}) \to \mathbb{C}$ are measurable. Then

|f| , $\operatorname{Re}(f)$, $\operatorname{Im}(f)$ and $f\pm g$, $f\cdot g$ are measurable.

proof Idea: These are consequences of **Remark 11** and **Proposition 15**: For |f|, $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ we note that

$$z \to |z|, z \to \operatorname{Re}(z)$$
 and $z \to \operatorname{Im}(z)$

are continuous functions. Hence $|\cdot| \circ f$, Re $\circ f$ and Im $\circ f$ are each the composition of a measurable with a continuous function. Hence these composition are measurable by **Remark 11**.

We prove the statement for f - g and $f \cdot g$ in a similar fashion.

Chapter 1.3 The extended real line

Aim: We want to allow real valued functions to take the values $+\infty$ or $-\infty$ so if $(f_n)_{n\in\mathbb{N}}$ is a sequence of functions we can consider

$$f(x) := \sup_{n \in \mathbb{N}} f_n(x)$$

without fussing.

Definition 1 The extended real line $\overline{\mathbb{R}} = [-\infty, \infty]$ is the topological space $\mathbb{R} \cup \{\pm \infty\}$ with the topology \mathcal{T} whose basis $\overline{\beta}$ are the sets

 $(a,b) \ , \ [-\infty,a) = \{-\infty\} \cup (-\infty,a) \ , \ (b,+\infty) \cup \{+\infty\} = (b,+\infty], \ {\rm where} \ \ a,b \in \mathbb{R} \ .$

Remark By taking $a, b \in \mathbb{Q}$ in the above definition, we see that $\overline{\mathbb{R}}$ is second countable.

Lemma 2 A function $f: (X, \mathcal{M}) \to \mathbb{R}$ is measurable, if and only if

 $f^{-1}((a, +\infty]) \in \mathcal{M}$ for all $a \in \mathbb{R}$.

proof " \Rightarrow " Clearly, as f is measurable and the set $(a, +\infty] \subset \mathcal{T}$ for all $a \in \mathbb{R}$ we know that $f^{-1}((a, +\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$.

" \Leftarrow " We have to show that $f^{-1}(B) \in \mathcal{M}$ for any element B of the basis $\bar{\beta}$. Then by Lemma 14 and as \mathbb{R} is second countable, we know that f is measurable.

We first prove this for the sets of the form $[-\infty, a]$:

Then we prove it for open intervals $[-\infty, a)$ using countable unions. We know that $[-\infty, b) =$

Finally, $f^{-1}((a, b)) = f^{-1}([-\infty, b)) \cap f^{-1}((a, +\infty)) \in \mathcal{M}$. Hence our statement is true.

lim inf and lim sup

We recall the following definitions from real analysis:

Let $(a_n)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$ be a sequence. For $k \geq 1$ consider the new sequence

$$b_k = \sup_{n \ge k} a_n = \sup\{a_k, a_{k+1}, a_{k+2}, a_{k+3}, \ldots\}$$

Then $b_{k+1} \leq b_k$ for all $k \in \mathbb{N}$ and therefore $\lim_k b_k = \inf_{k \in \mathbb{N}} b_k \in \overline{\mathbb{R}}$. We define

$$\limsup_{n \in \mathbb{N}} a_n \stackrel{\text{Def.}}{=} \lim_{k \to \infty} b_k = \inf_{k \in \mathbb{N}} b_k.$$

09/17/18

In a similar fashion we define

$$\liminf_{n \in \mathbb{N}} a_n \stackrel{\text{Def.}}{=} \lim_{k \to \infty} \inf_{k \ge n} a_n.$$

Example Sketch the sequence $(a_n)_{n \in \mathbb{N}}$, where $a_n := \frac{\cos(n)}{n}$. Then sketch the sequences $(\sup_{n \geq k} a_n)_k$ and $(\inf_{n \geq k} a_n)_k$.

Proposition 3 For a sequence $(a_n)_{n \in \mathbb{N}} \subset \overline{\mathbb{R}}$ we have that

- a) $\liminf_{n \in \mathbb{N}} a_n \leq \limsup_{n \in \mathbb{N}} a_n$.
- b) $\lim_{n\to\infty} a_n$ exists if and only if $\liminf_{n\in\mathbb{N}} a_n = \lim_{n\to\infty} a_n = \limsup_{n\in\mathbb{N}} a_n$.

proof Look it up.

Theorem 4 Suppose that $f_n: (X, \mathcal{M}) \to \overline{\mathbb{R}}$ is measurable for all $n \in \mathbb{N}$ Then so are

$$g = \sup_{n \in \mathbb{N}} f_n$$
, $h = \limsup_{n \in \mathbb{N}} f_n$, $p = \inf_{n \in \mathbb{N}} f_n$ and $q = \limsup_{n \in \mathbb{N}} f_n$. (pointwise)

proof Idea: We use Lemma 2:

1.) g: We have to show that for all $a \in \mathbb{R}$ we have that $g^{-1}((a, +\infty)) = \{x \in X \mid g(x) > a\} \in \mathcal{M}$. But

Hence
$$g^{-1}((a, +\infty)) = \bigcup_{n \in \mathbb{N}} f_n^{-1}((a, +\infty)) \in \mathcal{M}$$
. Hence g is a measurable function.

- 2.) p:
- 3.) h: Using 1.) and 2,) we see that
- 4.) q: In a similar fashion, as $q = \sup_{k \in \mathbb{N}} (\inf_{n \ge k} f_n)$ is measurable.

09/17/18

This theorem implies that measurability is preserved under pointwise limits.

Corollary 5 Suppose $Y = \overline{\mathbb{R}}$ or $Y = \mathbb{C}$ and let $f_n : (X, \mathcal{M}) \to Y$ be measurable for all $n \in \mathbb{N}$. Then if $f_n(x) \xrightarrow{n \to \infty} f(x)$ for all $x \in X$ then $f : (X, \mathcal{M}) \to Y$ is measurable.

proof If $Y = \overline{\mathbb{R}}$ we know that $\lim_{n\to\infty} f_n(x) = \limsup_{n\in\mathbb{N}} f_n(x)$. Hence the result follows from the theorem. If $Y = \mathbb{C}$ then