09/14/18

Lecture 2

Aim: Create a good theory of measure and measurable sets.

We recall:

Definition 1 (σ algebra) Let X be a set, a collection $\mathcal{M} \subset \mathcal{P}(X)$ of subsets of X is called a σ algebra if

- a) $X \in \mathcal{M}$.
- b) $A \in \mathcal{M} \Rightarrow A^c = X \setminus A \in \mathcal{M}$ (\mathcal{M} is closed under complements).
- c) $(A_k)_{k=1,\dots,\infty} \subset \mathcal{M} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$ (\mathcal{M} is closed under countable unions).

In this case (X, \mathcal{M}) is called a **measurable space**.

Lemma 2 If \mathcal{M} is a σ algebra then

- a) $\emptyset \in \mathcal{M}$.
- b) $A, B \in \mathcal{M} \Rightarrow A \setminus B \in \mathcal{M}$.
- c) $(A_k)_{k=1,\dots,n} \subset \mathcal{M} \Rightarrow \bigcup_{k=1}^n A_k \in \mathcal{M} \ (\mathcal{M} \text{ is closed under finite unions}).$
- d) $(A_k)_{k \in \mathbb{N}} \subset \mathcal{M} \Rightarrow \bigcap_{k=1}^{\infty} A_k \in \mathcal{M} \ (\mathcal{M} \text{ is closed under countable intersections}).$

proof

Examples

- 1.) $\mathcal{M} = \{\emptyset, X\}$
- 2.) $\mathcal{M} = \mathcal{P}(X)$
- 3.) Assume that X is uncountable and set

 $\mathcal{M} = \{A \subset X \mid X \text{ is countable or } X^c \text{ is countable} \}$ (HW 1)

09/14/18

We can generate σ algebras from interesting subsets of $\mathcal{P}(X)$:

Proposition 3 Let X be a set and $S \subset \mathcal{P}(X)$ be a collection of subsets of X. Then there is a smallest σ algebra \mathcal{M} such that $S \subset \mathcal{M}$. We call $\mathcal{M} = \langle S \rangle$ the σ algebra generated by S.

proof Let \mathcal{C} be the set of all σ algebras \mathcal{M}' , such that $\mathcal{S} \subset \mathcal{M}'$. Note that $\mathcal{C} \neq \emptyset$ as $\mathcal{P}(X) \in \mathcal{C}$. We check that

$$\mathcal{M} = \bigcap_{\mathcal{M}' \in \mathcal{C}} \mathcal{M}'$$

is a σ algebra:

Clearly it is the smallest such.

Generating σ algebras from topology

Aim: We can generate σ algebras from the topology of a set. This connects continuity and measurability.

Reminder: Topology

Definition 4 Let X be a set. A **topology** on X is a collection $\mathcal{T} \subset \mathcal{P}(X)$ of subsets of X, such that

- a) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$.
- b) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$ (\mathcal{T} is closed under intersection).
- c) $(A_k)_{k \in K} \subset \mathcal{T} \Rightarrow \bigcup_{k \in K} A_k \in \mathcal{T} \ (\mathcal{T} \text{ is closed under any union}).$

In this case the elements of \mathcal{T} the **open subsets** of X and (X, \mathcal{T}) is called a **topological space**.

Examples $\mathcal{T} = \{\emptyset, X\}$ or $\mathcal{T}' = \mathcal{P}(X)$.

Remark b) implies that \mathcal{T} is closed under finite intersections.

09/14/18

Definition 5 Let (X, \mathcal{T}) and (X', \mathcal{T}') be topological spaces. A function $f : X \to X'$ is continuous if

$$f^{-1}(A) \in \mathcal{T}$$
 for all $A \in \mathcal{T}'$.

Remark Continuity depends on the topologies.

Picture:

Similarly we can define a measurable function.

Definition 6 Let (X, \mathcal{M}) and (X', \mathcal{M}') be measurable spaces. A function $f : X \to X'$ is **measurable** if

$$f^{-1}(A) \in \mathcal{M}$$
 for all $A \in \mathcal{M}'$.

We can now generate σ algebras from topologies and define measurable functions for these σ algebras:

Definition 7 (Borel sets) If (X, \mathcal{T}) is a topological space, then the **Borel sets** are the elements of the σ algebra

 $\mathcal{B}(X) = \langle \mathcal{T} \rangle$, see **Proposition 3**.

Remark Although \mathcal{T} determines the σ algebra it is usually omitted from the definition.

Convention If (X, \mathcal{M}) is a measurable space and (Y, \mathcal{T}) a topological space then we say that

 $f: X \to Y$ is measurable

if and only it is measurable with respect to \mathcal{M} and $\mathcal{B}(Y)$.

Proposition 8 In the situation above, f is measurable if and only if

$$f^{-1}(A) \in \mathcal{M}$$
 for all $A \in \mathcal{T}$.

This means we can simplify our task when checking if a function is measurable. Before we prove the proposition, we prove a short lemma:

Lemma 9 (induced σ algebra) Let $f: X \to Y$ be a function and (X, \mathcal{M}) be measurable space. Then

$$\mathcal{N} = \{ B \in Y \mid f^{-1}(B) \in \mathcal{M} \}$$

is a σ algebra in Y, such that f is measurable.

proof We have to show that \mathcal{N} is a σ algebra. We check the conditions:

By a) - c) we know that \mathcal{N} is a σ algebra. By definition f is measurable for with respect to \mathcal{M} and \mathcal{N} .

We note that this σ algebra is induced by f. In a similar fashion, we can also induce a topology on Y via f, such that f is continuous. If \mathcal{T} is a topology of X then

$$\mathcal{T}' = \{ B \in Y \mid f^{-1}(B) \in \mathcal{T} \}$$

is a topology in Y, such that f is continuous.

We now prove the proposition:

proof " \Rightarrow " By definition the generating set of the σ algebra is \mathcal{T} and by the definition of $\langle \mathcal{T} \rangle$ we have that $\mathcal{T} \subset \langle \mathcal{T} \rangle = \mathcal{B}(Y)$. As f is measurable this implies one direction of the proposition.

" \Leftarrow "

Definition 10 (Borel map) Let X, Y be topological spaces. A map $f : X \to Y$ is called a **Borel map** or also **Borel** if $f^{-1}(B)$ is in $\mathcal{B}(X)$ for all $B \in Y$ open.

Part 1.) - 3.) of the following remark follow from **Proposition 8**. Part 4.) follows directly from the definition of measurable functions.

Remark 11

- 1.) f Borel \Leftrightarrow f measurable for $\mathcal{B}(X)$ and $\mathcal{B}(Y)$.
- 2.) f continuous \Rightarrow f Borel.
- 3.) If $f: X \to Y$ is Borel and $g: (Z, \mathcal{M}) \to X$ measurable. Then $f \circ g: Z \to Y$ is measurable.
- 4.) The composition of measurable functions is measurable.

We have seen it the proposition that it is sufficient to check the elements of the topology to see if f is measurable with respect to the generated σ algebra.

Question Is it sufficient to check only the basis of a topology to see if a function is measurable?

Answer This is sufficient, but only if the topology has a countable basis.

Definition (basis) Let (X, \mathcal{T}) be a topological space. Then $\beta \subset \mathcal{T}$ is a basis for the topology \mathcal{T} if

for all $A \in \mathcal{T}$ we have that $A = \bigcup_{i \in I} A_i$ where $(A_i)_{i \in I} \subset \beta$.

This means that every element in \mathcal{T} is a union of elements of β .

Theorem 12 (basis = neighbourhood basis) β is a basis for the topology \mathcal{T} iff

for all
$$A \in \mathcal{T}$$
 and for all $x \in A \exists \mathcal{U}(x) = \mathcal{U} \in \beta$, such that $x \in \mathcal{U} \subset A$.

Picture

Example A basis for \mathbb{R} is given by the set of open intervals (a, b) in \mathbb{R} .

09/14/18

Definition (second countable) A topological space (X, \mathcal{T}) is called **second countable** if there is a countable basis for its topology.

Example A countable basis for the usual topology of the real line \mathbb{R} is given by the open intervals with rational endpoints.

Proposition 13 If (X, d) is a metric space with a countable dense subset, the topology induced by the metric is second countable.

proof We know that
Picture
1.)

(3.)

- 1.) the basis β_d of the topology \mathcal{T}_d induced by the metric d is the collection of open balls in (X, d): $\beta_d = \{B_r(x) \mid r \in \mathbb{R}^+, x \in X\}$
- 2.) there is a countable dense subset $D = (x_n)_{n \in \mathbb{N}}$ in X.
- 3.) by **Theorem 12**, as β_d is a basis, we know that for all $A \in \mathcal{T}_d$ and $x \in A$ there is $B_r(x') \subset \beta_d$, such that $x \in B_r(x') \subset A$.

09/14/18

Corollary For $n \ge 1$, \mathbb{R}^n is second countable in the usual topology.

Lemma 14 Suppose β is a countable basis for the topology \mathcal{T}' of Y. Then

 $f: (X, \mathcal{M}) \to (Y, \mathcal{B}(Y))$ measurable $\Leftrightarrow f^{-1}(B) \in \mathcal{M}$ for all $B \in \beta$.

proof By Proposition 8 we know that it is sufficient to show that

$$f^{-1}(B) \in \mathcal{M}$$
 for all $B \in \beta \Leftrightarrow f^{-1}(V) \in \mathcal{M}$ for all $V \in \mathcal{T}'$

 $"\Rightarrow$ "

" \Leftarrow " The other direction is trivial.