11/12/18

Lecture 26 🎉

Chapter 5 - Local behavior

Last time: Open Mapping Theorem: Suppose Ω is a region and $f \in \mathcal{H}(\Omega)$. Then $f(\Omega)$ is either a point or a region.

Theorem 7 Suppose $f \in \mathcal{H}(\Omega)$ and $f'(z_0) \neq 0$ for some z_0 in Ω . Then there is an open neighborhood V of z_0 in Ω , such that

- i) f is one-to-one on V.
- ii) W = f(V) is open
- iii) f has a holomorphic inverse function f^{-1} on V.

proof As $f'(z_0) \neq 0$ we can choose $\epsilon > 0$ such that $D_{\epsilon}(z_0) \subset \Omega$ and such that

$$z \in D_{\epsilon}(z_0) \Rightarrow |f'(z) - f'(z_0)| \le \frac{1}{2}|f'(z_0)|$$

Picture

This implies that $|f'(z)| \ge \frac{1}{2} |f'(z_0)|$ if $z \in D_{\epsilon}(z_0)$. Let $V = D_{\epsilon}(z_0)$. Then $v \in V$ implies that $f'(z) \ne 0$. Also if $z_1, z_2 \in V$ then

$$f(z_2) - f(z_1) = \int_{[z_1, z_2]} f'(w) \, dw = \int_{[z_1, z_2]} f'(z_0) \, dw + \int_{[z_1, z_2]} f'(w) - f'(z_0) \, dw.$$

Using the statement above and the $\neq \Delta$ we can show that

$$|f(z_2) - f(z_1)| \ge \frac{1}{2} |f'(z_0)| |z_2 - z_1| \ne 0.$$
 (*)

proof

11/12/18

This implies i). Furthermore ii) follows from the **Open Mapping Theorem**. To prove iii), the existence of the holomorphic inverse let $g: W \to V$ be the inverse of f on V. We have to show that $g \in \mathcal{H}(W)$.

If $w_1 \neq w_2$ in W, then there is exactly one $z_i \in V$, such that $f(z_i) = w_i$ for $i \in \{1, 2\}$. Then

$$\frac{g(w_2) - g(w_1)}{w_2 - w_1} =$$

Furthermore, if $w_2 \to w_1$ then $f(z_2) \to f(z_1)$ and by (*) $z_2 \to z_1$. Since $f'(z_1) \neq 0$ we have

$$g'(w_1) =$$

Hence $g \in \mathcal{H}(W)$.

Corollary 8 Suppose Ω is a region and $f \in \mathcal{H}(\Omega)$. If f is injective in Ω then $f'(z) \neq 0$ for all $z \in \Omega$ and f has a holomorphic inverse.

proof First, $f(\Omega)$ is a region. If $f'(z_0) = 0$ for some $z_0 \in \Omega$, since f is not constant we know

	_	

Example Let $\Omega = \{z \in \mathbb{C} : 0 < \text{Im}(z) < 2\pi\}$ and consider

$$f: \Omega \to \mathbb{C}, z = x + iy \mapsto f(z) = e^{z} = e^{x} \cdot (\cos(y) + i\sin(y)).$$

We checked that f is injective on Ω and $f(\Omega) = \mathbb{C} \setminus [0, \infty)$. Then by **Corollary 8** we have that $f^{-1} \in \mathcal{H}(\mathbb{C} \setminus [0, \infty))$ and

 $f^{-1}(z) = \log(z) = \ln(|z|) + i \cdot \arg(z)$, where $\arg(z) = \phi$, such that $z = |z| \cdot e^{i\phi}$, $\phi \in (0, 2\pi)$. We verify $\log'(z) = \frac{1}{z}$.

11/12/18

Chapter 6 - Cauchy's Theorem (adult version)

Preliminaries

A path γ defines a linear functional on the space of continuous functions $C(\gamma^{\star})$:

$$\tilde{\gamma}: C(\gamma^{\star}) \to \mathbb{C}, f \mapsto \tilde{\gamma}(f) = \int_{\gamma} f(w) \, dw.$$

We recall that $\gamma_1 \simeq \gamma_2$, if $\tilde{\gamma}_1 = \tilde{\gamma}_2$.

If $\gamma_1, \gamma_2, \ldots, \gamma_n$ are paths in \mathbb{C} then each $\tilde{\gamma}_i$ can be seen as a functional on C(K) where

$$K = \bigcup_{i=1}^n \gamma_i^\star$$

Using a formal sum we can set $\Gamma = \gamma_1 \oplus \gamma_2 \oplus \ldots \oplus \gamma_n$ and define

$$\tilde{\Gamma}(f) = \tilde{\Gamma}(f) = \int_{\Gamma} f(w) \, dw := \sum_{i=1}^{n} \int_{\gamma_i} f(w) \, dw.$$

We say that two such sums Γ_1 and Γ_2 are equivalent if $\tilde{\Gamma}_1 = \tilde{\Gamma}_2$. We furthermore set $\Gamma^* = \bigcup_{i=1}^n \gamma_i^*$.

Picture

Definition 1 A chain in Ω is an equivalence class Γ of formal sums of paths in Ω . In particular $\Gamma^* \subset \Omega$. We define

- i) A chain Γ is called a cycle if Γ has a representation $\Gamma = \gamma_1 \oplus \gamma_2 \oplus \ldots \oplus \gamma_n$ where each γ_i is a closed path.
- ii) If Γ is a cycle and $a \notin \Gamma^{\star}$, then $\operatorname{Ind}_{\Gamma}(a) = \frac{1}{2\pi i} \cdot \int_{\Gamma} \frac{dz}{z-a}$.
- iii) In a natural way we define $-\Gamma = (-\gamma_1) \oplus (-\gamma_2) \oplus \ldots \oplus (-\gamma_n)$ and $\Gamma_1 \oplus \Gamma_2$.

11/12/18

Definition 2 A closed path $\gamma \in \Omega$ is said to be **homologous to zero** in Ω if for all $a \neq \Omega$ we have

$$\operatorname{Ind}_{\gamma}(a) = 0.$$

Examples

Note 3 If Ω is a convex region, then every closed path is homologous to zero. Hence $\operatorname{Ind}_{\Gamma}(a) = 0$ for all cycles $\Gamma \in \Omega$ and all $a \notin \Omega$.

proof

Cauchy's Theorem (adult version) (CTA) Let Ω be a domain and $f \in \mathcal{H}(\Omega)$. If Γ is a cycle in Ω such that $\operatorname{Ind}_{\Gamma}(a) = 0$ for all $a \notin \Omega$. Then

- i) For all $z \in \Omega \setminus \Gamma^*$ we have $\operatorname{Ind}_{\Gamma}(z) \cdot f(z) = \frac{1}{2\pi i} \cdot \int_{\Gamma} \frac{f(w)}{w-z} dw$.
- ii) $\int_{\Gamma} f(z) dz = 0.$
- iii) Furthermore if Γ_1 and Γ_2 are cycles such that $\operatorname{Ind}_{\Gamma_1}(a) = \operatorname{Ind}_{\Gamma_2}(a)$ for all $a \notin \Omega$, then

$$\int_{\Gamma_1} f(z) \, dz = \int_{\Gamma_2} f(z) \, dz$$

proof see Rudin: Real and complex analysis, p. 218-220.

Cauchy's Integral Formula for an Annulus Suppose Ω is a domain containing

$$A = \{ z \in \mathbb{C} : 0 \le r < |z - a| < R < +\infty \}$$

and $f \in \mathcal{H}(\Omega)$. Let $\gamma_1(t) = a + r \cdot e^{it}$ and $\gamma_2(t) = a + R \cdot e^{it}$ for $t \in [0, 2 \cdot \pi]$. Then for all $z \in A$ we have

$$f(z) = \frac{1}{2\pi i} \cdot \int_{\gamma_2} \frac{f(w)}{w-z} \, dw - \frac{1}{2\pi i} \cdot \int_{\gamma_1} \frac{f(w)}{w-z} \, dw \stackrel{\text{Def.}}{=} \frac{1}{2\pi i} \cdot \int_{\partial A} \frac{f(w)}{w-z} \, dw$$

Picture

proof Let $\Gamma = \gamma_2 - \gamma_1$. If $a \notin A \cup \Gamma^*$, then

Now we can apply CTA ii) and obtain our result.