Math 103: Measure Theory and Complex Analysis
 Fall 2018

Lecture 26 .

Chapter 5 - Local behavior

Last time: Open Mapping Theorem: Suppose Ω is a region and $f \in \mathcal{H}(\Omega)$. Then $f(\Omega)$ is either a point or a region.

Theorem 7 Suppose $f \in \mathcal{H}(\Omega)$ and $f^{\prime}\left(z_{0}\right) \neq 0$ for some z_{0} in Ω. Then there is an open neighborhood V of z_{0} in Ω, such that
i) f is one-to-one on V.
ii) $W=f(V)$ is open
iii) f has a holomorphic inverse function f^{-1} on V.
proof As $f^{\prime}\left(z_{0}\right) \neq 0$ we can choose $\epsilon>0$ such that $D_{\epsilon}\left(z_{0}\right) \subset \Omega$ and such that

$$
z \in D_{\epsilon}\left(z_{0}\right) \Rightarrow\left|f^{\prime}(z)-f^{\prime}\left(z_{0}\right)\right| \leq \frac{1}{2}\left|f^{\prime}\left(z_{0}\right)\right|
$$

Picture

This implies that $\left|f^{\prime}(z)\right| \geq \frac{1}{2}\left|f^{\prime}\left(z_{0}\right)\right|$ if $z \in D_{\epsilon}\left(z_{0}\right)$.
Let $V=D_{\epsilon}\left(z_{0}\right)$. Then $v \in V$ implies that $f^{\prime}(z) \neq 0$. Also if $z_{1}, z_{2} \in V$ then

$$
f\left(z_{2}\right)-f\left(z_{1}\right)=\int_{\left[z_{1}, z_{2}\right]} f^{\prime}(w) d w=\int_{\left[z_{1}, z_{2}\right]} f^{\prime}\left(z_{0}\right) d w+\int_{\left[z_{1}, z_{2}\right]} f^{\prime}(w)-f^{\prime}\left(z_{0}\right) d w
$$

Using the statement above and the $\neq \Delta$ we can show that

$$
\begin{equation*}
\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right| \geq \frac{1}{2}\left|f^{\prime}\left(z_{0}\right)\right|\left|z_{2}-z_{1}\right| \neq 0 . \tag{*}
\end{equation*}
$$

proof

Math 103: Measure Theory and Complex Analysis Fall 2018

This implies i). Furthermore ii) follows from the Open Mapping Theorem.
To prove iii), the existence of the holomorphic inverse let $g: W \rightarrow V$ be the inverse of f on V. We have to show that $g \in \mathcal{H}(W)$. If $w_{1} \neq w_{2}$ in W, then there is exactly one $z_{i} \in V$, such that $f\left(z_{i}\right)=w_{i}$ for $i \in\{1,2\}$. Then

$$
\frac{g\left(w_{2}\right)-g\left(w_{1}\right)}{w_{2}-w_{1}}=
$$

Furthermore, if $w_{2} \rightarrow w_{1}$ then $f\left(z_{2}\right) \rightarrow f\left(z_{1}\right)$ and by $\left(^{*}\right) z_{2} \rightarrow z_{1}$.
Since $f^{\prime}\left(z_{1}\right) \neq 0$ we have

$$
g^{\prime}\left(w_{1}\right)=
$$

Hence $g \in \mathcal{H}(W)$.
Corollary 8 Suppose Ω is a region and $f \in \mathcal{H}(\Omega)$. If f is injective in Ω then $f^{\prime}(z) \neq 0$ for all $z \in \Omega$ and f has a holomorphic inverse.
proof First, $f(\Omega)$ is a region. If $f^{\prime}\left(z_{0}\right)=0$ for some $z_{0} \in \Omega$, since f is not constant we know

Example Let $\Omega=\{z \in \mathbb{C}: 0<\operatorname{Im}(z)<2 \pi\}$ and consider

$$
f: \Omega \rightarrow \mathbb{C}, z=x+i y \mapsto f(z)=e^{z}=e^{x} \cdot(\cos (y)+i \sin (y))
$$

We checked that f is injective on Ω and $f(\Omega)=\mathbb{C} \backslash[0, \infty)$.
Then by Corollary $\mathbf{8}$ we have that $f^{-1} \in \mathcal{H}(\mathbb{C} \backslash[0, \infty))$ and
$f^{-1}(z)=\log (z)=\ln (|z|)+i \cdot \arg (z), \quad$ where $\arg (z)=\phi, \quad$ such that $z=|z| \cdot e^{i \phi}, \phi \in(0,2 \pi)$.
We verify $\log ^{\prime}(z)=\frac{1}{z}$.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Chapter 6 - Cauchy's Theorem (adult version)

Preliminaries

A path γ defines a linear functional on the space of continuous functions $C\left(\gamma^{\star}\right)$:

$$
\tilde{\gamma}: C\left(\gamma^{\star}\right) \rightarrow \mathbb{C}, f \mapsto \tilde{\gamma}(f)=\int_{\gamma} f(w) d w
$$

We recall that $\gamma_{1} \simeq \gamma_{2}$, if $\tilde{\gamma}_{1}=\tilde{\gamma}_{2}$.
If $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ are paths in \mathbb{C} then each $\tilde{\gamma}_{i}$ can be seen as a functional on $C(K)$ where

$$
K=\bigcup_{i=1}^{n} \gamma_{i}^{\star}
$$

Using a formal sum we can set $\Gamma=\gamma_{1} \oplus \gamma_{2} \oplus \ldots \oplus \gamma_{n}$ and define

$$
\tilde{\Gamma}(f)=\tilde{\Gamma}(f)=\int_{\Gamma} f(w) d w:=\sum_{i=1}^{n} \int_{\gamma_{i}} f(w) d w .
$$

We say that two such sums Γ_{1} and Γ_{2} are equivalent if $\tilde{\Gamma}_{1}=\tilde{\Gamma}_{2}$. We furthermore set $\Gamma^{\star}=\bigcup_{i=1}^{n} \gamma_{i}{ }^{\star}$.

Picture

Definition 1 A chain in Ω is an equivalence class Γ of formal sums of paths in Ω. In particular $\Gamma^{\star} \subset \Omega$. We define
i) A chain Γ is called a cycle if Γ has a representation $\Gamma=\gamma_{1} \oplus \gamma_{2} \oplus \ldots \oplus \gamma_{n}$ where each γ_{i} is a closed path.
ii) If Γ is a cycle and $a \notin \Gamma^{\star}$, then $\operatorname{Ind}_{\Gamma}(a)=\frac{1}{2 \pi i} \cdot \int_{\Gamma} \frac{d z}{z-a}$.
iii) In a natural way we define $-\Gamma=\left(-\gamma_{1}\right) \oplus\left(-\gamma_{2}\right) \oplus \ldots \oplus\left(-\gamma_{n}\right)$ and $\Gamma_{1} \oplus \Gamma_{2}$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Definition 2 A closed path $\gamma \in \Omega$ is said to be homologous to zero in Ω if for all $a \neq \Omega$ we have

$$
\operatorname{Ind}_{\gamma}(a)=0
$$

Examples

Note 3 If Ω is a convex region, then every closed path is homologous to zero. Hence $\operatorname{Ind}_{\Gamma}(a)=0$ for all cycles $\Gamma \in \Omega$ and all $a \notin \Omega$.
proof

Cauchy's Theorem (adult version) (CTA) Let Ω be a domain and $f \in \mathcal{H}(\Omega)$. If Γ is a cycle in Ω such that $\operatorname{Ind}_{\Gamma}(a)=0$ for all $a \notin \Omega$. Then
i) For all $z \in \Omega \backslash \Gamma^{\star}$ we have $\operatorname{Ind}_{\Gamma}(z) \cdot f(z)=\frac{1}{2 \pi i} \cdot \int_{\Gamma} \frac{f(w)}{w-z} d w$.
ii) $\int_{\Gamma} f(z) d z=0$.
iii) Furthermore if Γ_{1} and Γ_{2} are cycles such that $\operatorname{Ind}_{\Gamma_{1}}(a)=\operatorname{Ind}_{\Gamma_{2}}(a)$ for all $a \notin \Omega$, then

$$
\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z
$$

proof see Rudin: Real and complex analysis, p. 218-220.

Math 103: Measure Theory and Complex Analysis Fall 2018

Cauchy's Integral Formula for an Annulus Suppose Ω is a domain containing

$$
A=\{z \in \mathbb{C}: 0 \leq r<|z-a|<R<+\infty\}
$$

and $f \in \mathcal{H}(\Omega)$. Let $\gamma_{1}(t)=a+r \cdot e^{i t}$ and $\gamma_{2}(t)=a+R \cdot e^{i t}$ for $t \in[0,2 \cdot \pi]$. Then for all $z \in A$ we have

$$
f(z)=\frac{1}{2 \pi i} \cdot \int_{\gamma_{2}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \cdot \int_{\gamma_{1}} \frac{f(w)}{w-z} d w \stackrel{\text { Def. }}{=} \frac{1}{2 \pi i} \cdot \int_{\partial A} \frac{f(w)}{w-z} d w
$$

Picture

proof Let $\Gamma=\gamma_{2}-\gamma_{1}$. If $a \notin A \cup \Gamma^{\star}$, then

Now we can apply CTA ii) and obtain our result.

