11/7/18

Lecture 24

Corollary 5 If $f \in \mathcal{H}(\Omega \setminus \{a\})$, then

f has a pole at a $\Leftrightarrow \lim_{z \to a} |f(z)| = +\infty$

More precisely, f has a pole of order m at a iff:

$$\lim_{z \to a} |z - a|^{m-1} |f(z)| = \infty \text{ and } \lim_{z \to a} |z - a|^m |f(z)| = L < \infty$$

proof Exercise.

Proposition 6 (Cauchy's Estimate) Suppose $f \in \mathcal{H}(\Omega)$ and $D_R(a) \subseteq \Omega$. If $|f(z)| \leq M$ for $z \in D_R(a)$, then $|f^{(n)}(a)| \leq \frac{n!M}{R^n}$

proof Let 0 < r < R and $\gamma(t) = a + re^{it}$ for $t \in (0, 2\pi]$ Since $D_R(a)$ is convex and $\operatorname{Ind}_{\gamma}(a) = 1$, we know

$$f^{(n)}(a) = \frac{n!}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$$

Thus

$$\left|f^{(n)}(a)\right| \leq$$

and this holds for every $r < R. \ \square$

Picture

Liouville's Theorem A bounded entire function f i.e. $f \in \mathcal{H}(\mathbb{C})$ is constant.

proof Suppose $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Then for a = 0 in **Prop. 6** we get

Hence f is constant.

Definition 8 A sequence $\{f_n\}_n$ of functions on Ω is said to converge to $f : \Omega \to \mathbb{C}$ uniformly on compact subsets of Ω if:

 $\forall \varepsilon > 0, \forall \text{ compact } K \subset \Omega, \exists N = N(\varepsilon, K) \text{ such that } z \in K \text{ and } n \ge N \implies |f_n(z) - f(z)| < \varepsilon$ Picture

Example If $f(z) = \sum_{n\geq 0} c_n(z-a)^n$ for $z \in D_r(a)$, then the RHS converges uniformly on compact subsets. (Exercise)

Example (\mathbb{R} world): Let $f_n(x) = \frac{\sin(\pi nx)}{\sqrt{n}}$ for $x \in [0, 1]$. Then $f_n \to 0$ uniformly on [0, 1]. But, $f'_n(x) =$ and $f'_n \neq 0$, not even point-wise. (Notice that $f'_n(x)$ does not converge for any $x \in [0, 1]$)

Picture

11/7/18

In the complex world...

Theorem 9 Suppose $\{f_n\}_n \subset \mathcal{H}(\Omega)$ and $f_n \to f$ uniformly on compacts. Then $f \in \mathcal{H}(\Omega)$ and $f'_n \to f'$ uniformly on on compacts.

proof 1.) f is continuous in Ω : The convergence is uniform on all closed disks. Take $a \in \Omega$ and $D_{\delta}(a)$. We use that f_n is continuous for all $n \in \mathbb{N}$ and the uniform convergence on $D_{\delta}(a)$. Then we use the $\Delta \neq$ with a 3 ϵ proof:

2.) f is holomorphic in Ω : We use Morera's theorem. Note that if D is a disk in Ω and γ is a closed path in D, then γ^* is compact and $\int_{\gamma} f(z)dz = \lim_{n \to \infty} \int_{\gamma} f_n(z)dz = 0$. Picture

proof:

Thus $f \in \mathcal{H}(D)$ by Morera's Theorem, so $f \in \mathcal{H}(\Omega)$.

11/7/18

3.) $f'_n \to f'$ uniformly on compacts: Let $K \subset \Omega$ be compact.

Claim: $\exists K' \subset \Omega$ and r > 0 such that

- a) K' is compact
- b) $K \subset K' \subset \Omega$ and $\forall z \in K, \overline{D_r(z)} \subset K'$

Picture

Assume that the claim is true and set

$$M_n = \sup\{|f_n(z) - f(z)|, z \in K'\} \ge \sup\{|f_n(z) - f(z)|, |z - w| < r, w \in K\}$$

By the Cauchy estimate, if $w \in K$ and $D_r(w) \subset K'$,

$$\left|f_n'(w) - f'(w)\right| \le$$

But K' is compact, so $M_n \to 0$. Since K', M_n and r only depend on K, $f'_n \xrightarrow{uniformly} f'$ on K.

proof of Claim As K compact there $\exists \delta > 0$ such that $z \in K \Rightarrow D_{2\delta}(z) \subset \Omega$. Since K is compact, $\exists z_1, \ldots, z_n$ such that

$$K \subseteq \bigcup_{j=1}^n D_\delta(z_j)$$

Let $K' = \bigcup_{j=1}^{n} \overline{D_{\delta}(z_j)} \subset \bigcup_{j=1}^{n} D_{2\delta}(z_j) \subset \Omega.$

Now we can find r > 0 such that $z \in K \Rightarrow D_r(z) \subset K'$.

Corollary 10 All the derivatives of the f_n converge uniformly on compacts:

$$f_n^{(k)} \xrightarrow{uniformly} f^{(k)}$$
 for all $k \ge 0$.

Note Remember that on \mathbb{R} , sequences of smooth functions can converge to nowhere differentiable functions.