Math 103: Measure Theory and Complex Analysis Fall 2018

Lecture 23 💃

Outline We investigate the behavior of $f \in \mathcal{H}(\Omega \setminus \{a\})$ in z = a.

Corollary 12 The zeros of non-constant analytic functions are isolated.

Corollary If f is holomorphic in a region Ω , then Z(f) is at most countable (if $f \neq 0$).

proof:

Corollary 13 (holomorphic extension) Suppose $f, g \in \mathcal{H}(\Omega)$ and $\{z : f(z) = g(z)\}$ has a limit point in Ω . Then f = g

proof:

Example The function

$$\exp(z) = \sum_{n>0} \frac{z^n}{n!}$$

is the only entire function extending the real function $x \mapsto e^x$.

Example Let $f(z) = \sin\left(\frac{1}{z}\right)$ on $\Omega = D'_1(0)$ with

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

Then $f\left(\frac{1}{k\pi}\right) = 0$ for all $k \in \mathbb{Z}_+$, but $f \not\equiv 0$ because $0 \notin \Omega$.

Picture Sketch |f| near 0.

Math 103: Measure Theory and Complex Analysis Fall 2018

11/5/18

Note (Behavior if f'(a) = 0) Let $f \in \mathcal{H}(\Omega)$ and f'(a) = 0 for some $a \in \mathbb{C}$. By the power series expansion, we have in some disk $D_R(a)$

$$f(z) = f(a) + c_m \cdot (z - a)^m + \sum_{k > m} c_k (z - a)^k.$$

We look at the vectors $u = a + r \cdot e^{i\varphi}$ and $v = a + r \cdot e^{i\psi}$. $\angle(u,v) = |\varphi - \psi| = \angle(\frac{u-a}{v-a},1)$

Picture

We may assume that a = 0. Looking at the image we get for some $m \ge 2$:

$$f(u) = f(0) + c_m \cdot u^m + \sum_{k>m} c_k u^k \text{ and } f(v) = f(0) + c_m \cdot v^m + \sum_{k>m} c_k v^k$$
$$\frac{f(u) - f(0)}{f(v) - f(0)} =$$
and
$$\lim_{r \to 0} \frac{f(r \cdot e^{i\varphi}) - f(0)}{f(r \cdot e^{i\psi}) - f(0)} =$$

Hence for the angle we get $\angle(f(u), f(v)) =$

Chapter 4 - Singularities

Definition 1 If $a \in \Omega$ and $f \in \mathcal{H}(\Omega \setminus \{a\})$, then *a* is called an **isolated singularity** of *f*. If *a* is an isolated singularity of *f* in Ω and f(a) can be (re)defined to make $f \in \mathcal{H}(\Omega)$, then *a* is called a **removable singularity**.

Example Let

$$\sin(z) = z - \frac{z^3}{3!} + \dots = \sum_{n \ge 0} \frac{z^{2n+1}}{(2n+1)!} (-1)^n$$

11/5/18

Then
$$f(z) = \frac{\sin(z)}{z} \in \mathcal{H}(\mathbb{C} \setminus \{0\})$$
. For all $z \neq 0$,

$$f(z) =$$

We can define f(0) =

Remark 2 If f is continuous on Ω and $f \in \mathcal{H}(\Omega \setminus \{a\})$, then it follows from **Morera's Theorem** and **Cauchy's Theorem for** \triangle that $f \in \mathcal{H}(\Omega)$, so that a is a removable singularity (with f(a) as-is).

Theorem 3 If $f \in \mathcal{H}(\Omega \setminus \{a\})$ and $\exists r > 0$ such that $D_r(a) \subset \Omega$ and |f(z)| is bounded on $D'_r(a)$, then f has a removable singularity at a.

proof Let

$$h(z) = \begin{cases} (z-a)^2 f(z) & \text{if } z \neq a \\ 0 & \text{if } z = a \end{cases}$$

Since f is bounded near a, we have that h'(a) = 0:

so
$$h \in \mathcal{H}(\Omega)$$
. Thus $\exists \{c_n\}_{n \ge 2}$ such that $h(z) = \sum_{n \ge 2} c_n (z-a)^n$ for $z \in D_r(a)$.
If $z \neq a$, then

If $z \neq a$, then

$$h(z) = (z-a)^2 f(z) \implies$$

Thus if we set $f(a) = c_2$, we see $f \in \mathcal{H}(D_r(a))$. \Box

Theorem 4 (Classification of Isolated Singularities)

Suppose f has an isolated singularity at $a \in \Omega$ and $D_r(a) \subset \Omega$. Then, exactly one of the following holds:

- a) a is a removable singularity
- b) $\exists b_1, \ldots, b_m \in \mathbb{C}$ such that $b_m \neq 0$ and

$$f(z) - \sum_{j=1}^{m} \frac{b_j}{(z-a)^j}$$

has a removable singularity at a. In this case, we say that f has a **pole of order m** at a.

c) For all $0 < r' \leq r$, $f(D'_{r'}(a))$ is dense in \mathbb{C} . In this case, we say that f has an essential singularity at a.

Math 103: Measure Theory and Complex Analysis Fall 2018

11/5/18

proof Suppose c) fails. Then $\exists \delta > 0$ and $w \in \mathbb{C}$ such that

$$\forall z \in D'_{r'}(a), \, |f(z) - w| > \delta$$

Let $g(z) = \frac{1}{f(z) - w}$. Then $g \in \mathcal{H}(D'_{r'}(a))$ and $|g(z)| \leq \frac{1}{\delta}$ Thus g has a removable singularity at a and we can define g(a) such that $g \in \mathcal{H}(D_{r'}(a))$.

Case I $g(a) \neq 0$.

Then $f(z) = \frac{1}{g(z)} + w$ near a and f is bounded in some $D'_{\rho}(a)$ with $0 < \rho < r'$. Hence f has a removable singularity at a.

Case II g(a) = 0.

Clearly, a is an isolated zero of g, hence $\exists m \in \mathbb{Z}_+$ such that

$$g(z) = (z-a)^m h(z)$$

with $h \in \mathcal{H}(D_r(a))$ and $h(a) \neq 0$. But $\exists 0 < \rho < r$ such that $h(z) \neq 0$ in $D_{\rho}(a)$.

$$\implies \frac{1}{f(z) - w} = \qquad \qquad \text{for} \quad z \in D'_{\rho}(a)$$
$$\implies f(z) = \qquad \qquad \text{for} \quad z \in D'_{\rho}(a)$$

Then

$$f(z) - \sum_{n=0}^{m-1} c_n (z-a)^{n-m} =$$

Where the last expression is analytic in $D_{\rho}(a)$

Hence
$$f(z) - \sum_{n=0}^{m-1} c_n (z-a)^{n-m}$$
 has a removable singularity at a and $c_0 = \frac{1}{h(a)} \neq 0$. \Box