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Lecture 23

Outline We investigate the behavior of f ∈ H(Ω\{a}) in z = a.

Corollary 12 The zeros of non-constant analytic functions are isolated.

Corollary If f is holomorphic in a region Ω, then Z(f) is at most countable (if f 6≡ 0).

proof: . �

Corollary 13 (holomorphic extension) Suppose f, g ∈ H(Ω) and {z : f(z) = g(z)} has
a limit point in Ω. Then f = g

proof: . �

Example The function

exp(z) =
∑
n≥0

zn

n!

is the only entire function extending the real function x 7→ ex.

Example Let f(z) = sin
(
1
z

)
on Ω = D′1(0) with

sin(z) =
eiz − e−iz

2i

Then f
(

1
kπ

)
= 0 for all k ∈ Z+, but f 6≡ 0 because 0 /∈ Ω.

Picture Sketch |f | near 0.
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Note (Behavior if f ′(a) = 0) Let f ∈ H(Ω) and f ′(a) = 0 for some a ∈ C. By the power
series expansion, we have in some disk DR(a)

f(z) = f(a) + cm · (z − a)m +
∑
k>m

ck(z − a)k.

We look at the vectors u = a+ r · eiϕ and v = a+ r · eiψ. ∠(u, v) = |ϕ− ψ| = ∠(u−av−a , 1)

Picture

We may assume that a = 0. Looking at the image we get for some m ≥ 2:

f(u) = f(0) + cm · um +
∑
k>m

cku
k and f(v) = f(0) + cm · vm +

∑
k>m

ckv
k.

f(u)− f(0)

f(v)− f(0)
= and

lim
r→0

f(r · eiϕ)− f(0)

f(r · eiψ)− f(0)
=

Hence for the angle we get ∠(f(u), f(v)) = .

Chapter 4 - Singularities

De�nition 1 If a ∈ Ω and f ∈ H(Ω \ {a}), then a is called an isolated singularity of f .
If a is an isolated singularity of f in Ω and f(a) can be (re)de�ned to make f ∈ H(Ω), then

a is called a removable singularity.

Example Let

sin(z) = z − z3

3!
+ · · · =

∑
n≥0

z2n+1

(2n+ 1)!
(−1)n
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Then f(z) = sin(z)
z ∈ H(C \{0}). For all z 6= 0,

f(z) =

We can de�ne f(0) = .

Remark 2 If f is continuous on Ω and f ∈ H(Ω\{a}), then it follows from Morera's The-

orem and Cauchy's Theorem for 4 that f ∈ H(Ω), so that a is a removable singularity (with
f(a) as-is).

Theorem 3 If f ∈ H(Ω\{a}) and ∃r > 0 such that Dr(a) ⊂ Ω and |f(z)| is bounded on
D′r(a), then f has a removable singularity at a.

proof Let

h(z) =

{
(z − a)2f(z) if z 6= a

0 if z = a

Since f is bounded near a, we have that h′(a) = 0:

so h ∈ H(Ω). Thus ∃{cn}n≥2 such that h(z) =
∑
n≥2

cn(z − a)n for z ∈ Dr(a).

If z 6= a, then

h(z) = (z − a)2f(z) =⇒

Thus if we set f(a) = c2, we see f ∈ H(Dr(a)). �

Theorem 4 (Classi�cation of Isolated Singularities)

Suppose f has an isolated singularity at a ∈ Ω and Dr(a) ⊂ Ω. Then, exactly one of the following
holds:

a) a is a removable singularity

b) ∃b1, . . . , bm ∈ C such that bm 6= 0 and

f(z)−
m∑
j=1

bj
(z − a)j

has a removable singularity at a. In this case, we say that f has a pole of order m at a.

c) For all 0 < r
′ ≤ r, f(D

′

r′
(a)) is dense in C. In this case, we say that f has an essential

singularity at a.
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proof Suppose c) fails. Then ∃δ > 0 and w ∈ C such that

∀z ∈ D′

r′
(a), |f(z)− w| > δ

Let g(z) =
1

f(z)− w
. Then g ∈ H(D

′

r′
(a)) and |g(z)| ≤ 1

δ

Thus g has a removable singularity at a and we can de�ne g(a) such that g ∈ H(Dr′ (a)).

Case I g(a) 6= 0.
Then f(z) = 1

g(z) + w near a and f is bounded in some D
′
ρ(a) with 0 < ρ < r

′
. Hence f

has a removable singularity at a.

Case II g(a) = 0.
Clearly, a is an isolated zero of g, hence ∃m ∈ Z+ such that

g(z) = (z − a)mh(z)

with h ∈ H(Dr(a)) and h(a) 6= 0.
But ∃0 < ρ < r such that h(z) 6= 0 in Dρ(a).

=⇒ 1

f(z)− w
= for z ∈ D′

ρ(a)

=⇒ f(z) = for z ∈ D′
ρ(a)

Then

f(z)−
m−1∑
n=0

cn(z − a)n−m =

Where the last expression is analytic in Dρ(a)

Hence f(z)−
m−1∑
n=0

cn(z − a)n−m has a removable singularity at a and c0 = 1
h(a) 6= 0. �


