Math 103: Measure Theory and Complex Analysis Fall 2018

Lecture 22

Outline: Using Cauchy's Formula for Convex Sets applied to disks we can now prove that $f \in \mathcal{H}(\Omega) \Leftrightarrow f$ analytic in Ω.

Recall: If $f: \Omega \rightarrow \mathbb{C}$ holomorphic and $\gamma \subset \Omega$ is a closed path then for $z \in \Omega \backslash \gamma^{\star}$ then

$$
\operatorname{Ind}_{\gamma}(z) \cdot f(z)=\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

Picture

Theorem 5 (analytic $=$ holomorphic) Let Ω be a domain and $f: \Omega \rightarrow \mathbb{C}$ a function. Then

$$
f \in \mathcal{H}(\Omega) \Leftrightarrow f \text { is analytic in } \Omega
$$

In particular, $f \in \mathcal{H}(\Omega) \Rightarrow f^{\prime} \in \mathcal{H}(\Omega)$. Furthermore if Ω is convex then $\int f$ in $\mathcal{H}(\Omega)$ by Cauchy's theorem for Convex Sets.

Note: The condition that Ω is convex can be extended to Ω simply connected, but not completely dropped. The example is the function

$$
f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}, z \mapsto \frac{1}{z}
$$

It's antiderivative is $\log (z)$, which is defined on $\mathbb{C} \backslash\{0\}$ but by our definition not continuous on the real axis. We can understand the function $\frac{1}{z}$ by lookingat the images of circles and using polar coordinates i.e. $z=r \cdot e^{i \varphi}$. Then $\frac{1}{z}=$

Math 103: Measure Theory and Complex Analysis Fall 2018

proof: We already have that analytic \Rightarrow holomorphic. Now assume that f is holomorphic in Ω and let $a \in \Omega, R>0$ such that $D_{R}(a) \subseteq \Omega$. Choose r such that $0<r<R$ and let

$$
\gamma(t)=a+r e^{i t} \text { for } t \in[0,2 \pi)
$$

Picture

Then if $z \in D_{r}(a), \operatorname{Ind}_{\gamma}(z)=1$ and by Cauchy's Formula,

$$
\begin{equation*}
f(z)= \tag{1.}
\end{equation*}
$$

The RHS is of the form $\int_{X} \frac{1}{\varphi(t)-z} d \nu(t)$ with

$$
\begin{array}{rlr}
X & = & \\
\varphi(t) & = & \\
d \nu(t) & = & d t
\end{array}
$$

so f is analytic by Ch.1, Theorem 12.

Note: The formula for the derivatives of f obtained in Ch. 1, Theorem 12 is equal to deriving $f(z)$ in (1) under the integral. Hence we obtain

$$
f^{(k)}(z)=
$$

Remark 6 Note that by our proof the power series expansion for $f \in \mathcal{H}(\Omega)$ about $a \in \Omega$ converges in the largest disk $D_{R}(a)$ such that $D_{R}(a) \subseteq \Omega$.

Example Consider the power series expansion for f around 0 where

$$
\begin{aligned}
f(z) & =\frac{1}{1+e^{z}} \\
& =\frac{1}{2}-\frac{1}{4} z+\frac{1}{48} z^{3}-\frac{1}{480} z^{5}+o\left(z^{7}\right)
\end{aligned}
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Then f is not defined for . Hence f is holomorphic on
Hence the radius of convergence is
Picture Sketch the domain of f and $|f|$ on the $x y$ plane exchanging the y and x axis.

Corollary 7 If Ω is a convex region, $f \in \mathcal{H}(\Omega)$ and γ is a closed path in Ω, then for any $z \in \Omega \backslash \gamma^{\star}$

$$
\operatorname{Ind}_{\gamma}(z) \cdot f^{(k)}(z)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} d w
$$

proof: If

$$
g(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

then we know that

$$
g^{(k)}(z)=
$$

Then we can set $g(z)=\operatorname{Ind}_{\gamma}(z) \cdot f(z)$ and $\operatorname{Ind}_{\gamma}$ is constant on the components of $\Omega \backslash \gamma^{\star}$.
Theorem 8 (Morera's Theorem) Suppose that f is continuous on a domain Ω and that

$$
\int_{\partial \Delta} f(z) d z=0
$$

for all triangles $\Delta \subseteq \Omega$. Then $f \in \mathcal{H}(\Omega)$. This is a converse of sorts for Cauchy's Theorem.
proof: It suffices to prove that f is holomorphic in every open disk in Ω. Let V be a convex subregion of Ω and $a \in V$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Picture

For $z \in V$ let

$$
F(z)=\int_{[a, z]} f(w) d w
$$

Then $F^{\prime}=f$:

But $F \in \mathcal{H}(V)$, so $F^{\prime}=f \in \mathcal{H}(V)$.
Definition 9 If $a \in \mathbb{C}$ and $r>0$ then

$$
D_{r}^{\prime}(a):=\{z: 0<|z-a|<r\}=D_{r}(a) \backslash\{a\}
$$

is called the punctured disk of radius r centered at a.
Picture

Definition 10 If $E \subseteq \mathbb{C}$, then p is a limit point of E if

$$
\forall r>0, D_{r}^{\prime}(p) \cap E \neq \emptyset
$$

We denote by E^{\prime} the set of limit points of E.
Observe E^{\prime} is closed (its complement is clearly open).

Math 103: Measure Theory and Complex Analysis Fall 2018

Theorem 11 Let Ω be a region and $f \in \mathcal{H}(\Omega)$. Let $Z(f)=\{a \in \Omega: f(a)=0\}$. Then either

$$
Z(f)=\Omega \quad \text { or } \quad Z(f)^{\prime} \cap \Omega=\emptyset
$$

In the latter case, given $a \in Z(f), \exists m$ such that $\exists g \in \mathcal{H}(\Omega)$ with $g(a) \neq 0$ and

$$
f(z)=(z-a)^{m} g(z)
$$

for all $z \in \Omega$. We call m the order of the zero a.
Note This is analogous to polynomial behavior.
Note If $f^{\prime}(a)=0$, then the angle between two vectors is multiplied in the image.

