11/2/18

Lecture 22

Outline: Using Cauchy's Formula for Convex Sets applied to disks we can now prove that $f \in \mathcal{H}(\Omega) \Leftrightarrow f$ analytic in Ω .

Recall: If $f: \Omega \to \mathbb{C}$ holomorphic and $\gamma \subset \Omega$ is a closed path then for $z \in \Omega \setminus \gamma^*$ then

$$\operatorname{Ind}_{\gamma}(z) \cdot f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w-z} \, dw.$$

Picture

Theorem 5 (analytic = holomorphic) Let Ω be a domain and $f : \Omega \to \mathbb{C}$ a function. Then

$$f \in \mathcal{H}(\Omega) \Leftrightarrow f$$
 is analytic in Ω

In particular, $f \in \mathcal{H}(\Omega) \Rightarrow f' \in \mathcal{H}(\Omega)$. Furthermore if Ω is convex then $\int f$ in $\mathcal{H}(\Omega)$ by Cauchy's theorem for Convex Sets.

Note: The condition that Ω is convex can be extended to Ω simply connected, but not completely dropped. The example is the function

$$f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, z \mapsto \frac{1}{z}.$$

It's antiderivative is $\log(z)$, which is defined on $\mathbb{C} \setminus \{0\}$ but by our definition not continuous on the real axis. We can understand the function $\frac{1}{z}$ by lookingat the images of circles and using polar coordinates i.e. $z = r \cdot e^{i\varphi}$. Then $\frac{1}{z} = \frac{1}{2}$.

11/2/18

proof: We already have that analytic \Rightarrow holomorphic. Now assume that f is holomorphic in Ω and let $a \in \Omega$, R > 0 such that $D_R(a) \subseteq \Omega$. Choose r such that 0 < r < R and let

$$\gamma(t) = a + re^{it}$$
 for $t \in [0, 2\pi)$

Picture

Then if $z \in D_r(a)$, $\operatorname{Ind}_{\gamma}(z) = 1$ and by Cauchy's Formula,

$$f(z) = \tag{1.}$$

The RHS is of the form $\int_X \frac{1}{\varphi(t)-z} d\nu(t)$ with

$$\begin{array}{l} X = \\ \varphi(t) = \\ d\nu(t) = \\ \end{array} dt$$

so f is analytic by Ch.1, Theorem 12.

Note: The formula for the derivatives of f obtained in Ch. 1, Theorem 12 is equal to deriving f(z) in (1) under the integral. Hence we obtain

$$f^{(k)}(z) =$$

Remark 6 Note that by our proof the power series expansion for $f \in \mathcal{H}(\Omega)$ about $a \in \Omega$ converges in the largest disk $D_R(a)$ such that $D_R(a) \subseteq \Omega$.

Example Consider the power series expansion for f around 0 where

$$f(z) = \frac{1}{1+e^z}$$

= $\frac{1}{2} - \frac{1}{4}z + \frac{1}{48}z^3 - \frac{1}{480}z^5 + o(z^7)$

Then f is not defined for f . Hence f is holomorphic on Hence the radius of convergence is

Picture Sketch the domain of f and |f| on the xy plane exchanging the y and x axis.

Corollary 7 If Ω is a convex region, $f \in \mathcal{H}(\Omega)$ and γ is a closed path in Ω , then for any $z \in \Omega \setminus \gamma^*$

$$\operatorname{Ind}_{\gamma}(z) \cdot f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{k+1}} dw$$

proof: If

$$g(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw$$

then we know that

 $g^{(k)}(z) =$

Then we can set $g(z) = \operatorname{Ind}_{\gamma}(z) \cdot f(z)$ and $\operatorname{Ind}_{\gamma}$ is constant on the components of $\Omega \setminus \gamma^*$. \Box

Theorem 8 (Morera's Theorem) Suppose that f is continuous on a domain Ω and that

$$\int_{\partial\Delta} f(z)dz = 0$$

for all triangles $\Delta \subseteq \Omega$. Then $f \in \mathcal{H}(\Omega)$. This is a converse of sorts for Cauchy's Theorem.

proof: It suffices to prove that f is holomorphic in every open disk in Ω . Let V be a convex subregion of Ω and $a \in V$.

11/2/18

Picture

For $z \in V$ let

$$F(z) = \int_{[a,z]} f(w) dw$$

Then F' = f:

But $F \in \mathcal{H}(V)$, so $F' = f \in \mathcal{H}(V)$.

Definition 9 If $a \in \mathbb{C}$ and r > 0 then

$$D'_r(a) := \{ z : 0 < |z - a| < r \} = D_r(a) \setminus \{ a \}$$

is called the **punctured disk** of radius r centered at a. **Picture**

Definition 10 If $E \subseteq \mathbb{C}$, then p is a **limit point** of E if

$$\forall r > 0, D'_r(p) \cap E \neq \emptyset$$

We denote by E' the set of limit points of E.

Observe E' is closed (its complement is clearly open).

11/2/18

Theorem 11 Let Ω be a region and $f \in \mathcal{H}(\Omega)$. Let $Z(f) = \{a \in \Omega : f(a) = 0\}$. Then either

$$Z(f) = \Omega$$
 or $Z(f)' \cap \Omega = \emptyset$

In the latter case, given $a \in Z(f)$, $\exists m$ such that $\exists g \in \mathcal{H}(\Omega)$ with $g(a) \neq 0$ and

$$f(z) = (z-a)^m g(z)$$

for all $z \in \Omega$. We call m the **order** of the zero a.

Note This is analogous to polynomial behavior.

Note If f'(a) = 0, then the angle between two vectors is multiplied in the image.