Math 103: Measure Theory and Complex Analysis
 Fall 2018

Lecture 21

Chapter 3 - The local Cauchy Theorem

Idea: γ closed in $\Omega, f \in \mathcal{H}(\Omega)+$ topological condition on $\Omega \Longrightarrow \int_{\gamma} f d t=0$.
Theorem 1 (Cauchy's Theorem for triangles) Let Ω be a domain and $\triangle=\triangle(a, b, c) \subseteq \Omega$. If $f: \Omega \rightarrow \mathbb{C}$ is continuous and $f \in \mathcal{H}(\Omega \backslash\{p\})$, then

$$
\int_{\partial \triangle} f(z) d z=0
$$

Picture

proof Assume first that $p \notin \triangle$. If a, b, c lie on a straight line, then this is true. Otherwise, let $a^{\prime}, b^{\prime}, c^{\prime}$ be the midpoints of $[b, c],[a, c]$ and $[a, b]$, respectively and set:

$$
\begin{aligned}
& \triangle^{1}=\triangle\left(a c^{\prime} b^{\prime}\right) \\
& \triangle^{2}=\triangle\left(b a^{\prime} c^{\prime}\right) \\
& \triangle^{3}=\triangle\left(c b^{\prime} a^{\prime}\right) \\
& \triangle^{4}=\triangle\left(a^{\prime} b^{\prime} c^{\prime}\right)
\end{aligned}
$$

Let

$$
J=\int_{\partial \triangle} f(z) d z=\sum_{k=1}^{4} \int_{\partial \triangle^{k}} f(z) d z \quad \text { and } \quad L=\ell(\partial \triangle)
$$

We want to show that $|J|=0$. We know that for some $k \in\{1,2,3,4\}$, we have

$$
|J| \leq \quad, \quad \ell\left(\partial \triangle^{k}\right)=\quad \text { and } \quad \operatorname{diam}(\triangle) \leq
$$

Set $\triangle^{k}=\triangle_{1}$, and iterate: $\triangle \supset \triangle_{1} \supset \triangle_{2} \cdots$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Note: (1) $l\left(\partial \triangle_{n}\right)=$
(2) $|J| \leq$
(3) $\operatorname{diam}\left(\triangle_{n}\right)=$

Now \triangle is compact and each \triangle_{n} is compact. We can choose a point $z_{n} \in \triangle_{n}$. Then $\left(z_{n}\right)_{n}$ is a Cauchy sequence. Let $z_{0}=\lim _{n \rightarrow \infty} z_{n}$. Then

$$
\bigcap_{n \geq 1} \triangle_{n}=\left\{z_{0}\right\}, \quad z_{0} \in \triangle
$$

Picture

Since we are assuming $p \notin \triangle, f^{\prime}\left(z_{0}\right)$ exists: $\forall \varepsilon>0, \exists \delta>0$ such that

Choose n large enough, so $z \in \triangle_{n} \Rightarrow\left|z-z_{0}\right|<\delta$.
By Corollary 12 of the Fundamental Theorem we have,

$$
\int_{\partial \triangle_{n}} f(z) d z=\int_{\partial \Delta^{n}}\left(f(z)-f\left(z_{0}\right)-f^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)\right) d z .
$$

So using (1) - (3) we get:

$$
\left|\int_{\partial \Delta^{n}} f(z) d z\right| \leq
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Picture

Now assume p is a vertex. We may assume $p=a$. Since f is bounded, $\exists x \in[a, b]$ and $\exists y \in[c, a]$ such that

$$
\left|\int_{\partial \triangle(a, x, y)} f(z) d z\right|<\varepsilon
$$

But

$$
J=
$$

and $\partial \triangle(a, x, y)$ can be made arbitrarily small if $x, y \rightarrow a$.
Finally if $p \in \triangle$, but not a vertex , we triangulate \triangle with the new vertex p (see above). This settles the proof in the last case.

Theorem 2 (Cauchy's Theorem for Convex Sets) Suppose Ω is a convex region, that f is continuous on Ω and $f \in \mathcal{H}(\Omega \backslash\{p\})$ for some $p \in \Omega$. Then

$$
\int_{\gamma} f(z) d z=0 \text { for any closed path } \gamma \subset \Omega .
$$

In fact, f has an antiderivative in Ω.

Picture

Math 103: Measure Theory and Complex Analysis Fall 2018

Picture

proof: Fix $a \in \Omega$ and defined, for $z \in \Omega$,

$$
F(z)=\int_{[a, z]} f(w) d w
$$

Notice that since Ω is convex, if $z, z_{0} \in \Omega$, then $\triangle\left(a, z, z_{0}\right) \subseteq \Omega$.
Therefore, by Cauchy's Theorem for triangles, we get

$$
F(z)=\int_{\left[a, z_{0}\right]} f(w) d w+\int_{\left[z_{0}, z\right]} f(w) d w .
$$

Hence if $z \neq z_{0}$ in Ω, then using that $f(w)=f(w)-f\left(z_{0}\right)+f\left(z_{0}\right)$ we have

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=
$$

Since f is continuous at z_{0}, we have for fixed $\epsilon>0$ there is $\delta>0$, such that
Therefore

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}-f\left(z_{0}\right)=
$$

Hence $F \in \mathcal{H}(\Omega)$ and $F^{\prime}=f$.
The conclusion follows from the Fundamental Theorem for Line Integrals.

Math 103: Measure Theory and Complex Analysis Fall 2018

Theorem 3 (Cauchy's Formula in a Convex Set) Suppose Ω is a convex region and $f \in \mathcal{H}(\Omega)$. Let γ be a closed path in Ω. If $z \in \Omega \backslash \gamma^{*}$, then

$$
\operatorname{Ind}_{\gamma}(z) \cdot f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(w)}{w-z} d w
$$

Picture

Remark 4 This is most useful if γ^{*} is a circle or a Jordan curve and z is "inside" of γ with $\operatorname{Ind}_{\gamma}(z)=1$. If $f \equiv 1$, this is true by definition of the index.
proof: Fix $z \in \Omega \backslash \gamma^{*}$ and let

$$
g(w)= \begin{cases}\frac{f(w)-f(z)}{w-z} & \text { if } w \neq z \\ f^{\prime}(z) & \text { if } w=z\end{cases}
$$

It is continuous on Ω and $g \in \mathcal{H}(\Omega \backslash\{z\})$. By Cauchy's theorem, $\int_{\gamma} g=0$, that is

