10/31/18

Lecture 21

Chapter 3 - The local Cauchy Theorem

Idea: γ closed in Ω , $f \in \mathcal{H}(\Omega)$ + topological condition on $\Omega \Longrightarrow \int_{\gamma} f dt = 0$.

Theorem 1 (Cauchy's Theorem for triangles) Let Ω be a domain and $\Delta = \Delta(a, b, c) \subseteq \Omega$. If $f : \Omega \to \mathbb{C}$ is continuous and $f \in \mathcal{H}(\Omega \setminus \{p\})$, then

$$\int_{\partial \bigtriangleup} f(z) \, dz = 0.$$

Picture

proof Assume first that $p \notin \triangle$. If a, b, c lie on a straight line, then this is true. Otherwise, let a', b', c' be the midpoints of [b, c], [a, c] and [a, b], respectively and set:

$$\Delta^{1} = \Delta(ac'b')$$
$$\Delta^{2} = \Delta(ba'c')$$
$$\Delta^{3} = \Delta(cb'a')$$
$$\Delta^{4} = \Delta(a'b'c')$$

Let

$$J = \int_{\partial \bigtriangleup} f(z) \, dz = \sum_{k=1}^4 \int_{\partial \bigtriangleup^k} f(z) \, dz \quad \text{and} \quad L = \ell(\partial \bigtriangleup).$$

We want to show that |J| = 0. We know that for some $k \in \{1, 2, 3, 4\}$, we have

$$|J| \leq \qquad \qquad , \quad \ell(\partial \triangle^k) = \qquad \qquad \text{and} \quad \operatorname{diam}(\triangle) \leq$$

Set $\triangle^k = \triangle_1$, and iterate: $\triangle \supset \triangle_1 \supset \triangle_2 \cdots$.

10/31/18

Note: (1) $l(\partial \triangle_n) =$

- $(2) |J| \le$
- (3) diam(\triangle_n) =

Now \triangle is compact and each \triangle_n is compact. We can choose a point $z_n \in \triangle_n$. Then $(z_n)_n$ is a Cauchy sequence. Let $z_0 = \lim_{n \to \infty} z_n$. Then

$$\bigcap_{n\geq 1} \triangle_n = \{z_0\}, \quad z_0 \in \triangle.$$

Picture

Since we are assuming $p \notin \triangle$, $f'(z_0)$ exists: $\forall \varepsilon > 0, \exists \delta > 0$ such that

Choose *n* large enough, so $z \in \triangle_n \Rightarrow |z - z_0| < \delta$.

By Corollary 12 of the Fundamental Theorem we have,

$$\int_{\partial \bigtriangleup_n} f(z) \, dz = \int_{\partial \bigtriangleup^n} \left(f(z) - f(z_0) - f'(z_0)(z - z_0) \right) dz.$$

So using (1) - (3) we get:

$$\left| \int_{\partial \triangle^n} f(z) \, dz \right| \le$$

10/31/18

Picture

Now assume p is a vertex. We may assume p = a. Since f is bounded, $\exists x \in [a, b]$ and $\exists y \in [c, a]$ such that

$$\left|\int_{\partial \triangle(a,x,y)} f(z) \, dz\right| < \varepsilon.$$

 But

J =

and $\partial \triangle(a, x, y)$ can be made arbitrarily small if $x, y \rightarrow a$.

Finally if $p \in \Delta$, but not a vertex |, we triangulate Δ with the new vertex p (see above). This settles the proof in the last case.

Theorem 2 (Cauchy's Theorem for Convex Sets) Suppose Ω is a convex region, that f is continuous on Ω and $f \in \mathcal{H}(\Omega \setminus \{p\})$ for some $p \in \Omega$. Then

$$\int_{\gamma} f(z) dz = 0 \text{ for any closed path } \gamma \subset \Omega.$$

In fact, f has an antiderivative in Ω .

Picture

10/31/18

Picture

proof: Fix $a \in \Omega$ and defined, for $z \in \Omega$,

$$F(z) = \int_{[a,z]} f(w) du$$

Notice that since Ω is convex, if $z, z_0 \in \Omega$, then $\Delta(a, z, z_0) \subseteq \Omega$.

Therefore, by Cauchy's Theorem for triangles, we get

$$F(z) = \int_{[a,z_0]} f(w) \, dw + \int_{[z_0,z]} f(w) \, dw$$

Hence if $z \neq z_0$ in Ω , then using that $f(w) = f(w) - f(z_0) + f(z_0)$ we have

$$\frac{F(z) - F(z_0)}{z - z_0} =$$

Since f is continuous at z_0 , we have for fixed $\epsilon > 0$ there is $\delta > 0$, such that Therefore

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) =$$

Hence $F \in \mathcal{H}(\Omega)$ and F' = f. The conclusion follows from the **Fundamental Theorem for Line Integrals**.

10/31/18

Theorem 3 (Cauchy's Formula in a Convex Set) Suppose Ω is a convex region and $f \in \mathcal{H}(\Omega)$. Let γ be a closed path in Ω . If $z \in \Omega \setminus \gamma^*$, then

$$\operatorname{Ind}_{\gamma}(z) \cdot f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w-z} dw$$

Picture

Remark 4 This is most useful if γ^* is a circle or a Jordan curve and z is "inside" of γ with $\operatorname{Ind}_{\gamma}(z) = 1$. If $f \equiv 1$, this is true by definition of the index.

proof: Fix $z \in \Omega \setminus \gamma^*$ and let

$$g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{if } w \neq z\\ f'(z) & \text{if } w = z \end{cases}$$

It is continuous on Ω and $g \in \mathcal{H}(\Omega \setminus \{z\})$. By Cauchy's theorem, $\int_{\gamma} g = 0$, that is