10/29/18

Lecture 20

Reminder $e^{x+iy} \stackrel{Def.}{=} e^x \cdot (\cos(y) + i\sin(y))$. Then

 $f(z) = e^z \in \mathcal{H}(\mathbb{C})$ and f' = f.

Picture Plot e^z using the grid map i.e. look at $\{f(x+iy), x = const.\}$ and $\{f(x+iy), y = const.\}$

Furthermore $e^w = 1 \Leftrightarrow w = 2\pi \cdot i \cdot k$ for some $k \in \mathbb{Z}$. Given the picture above how can we define the inverse function log?

Remark 8 For any continuous $f: \Omega \to \mathbb{C}$ we have

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, dz \le M \ell(\gamma) \quad \text{where} \quad M = \max\{|f(z)|, z \in \gamma^*\}.$$

proof

10/29/18

Theorem 9 Let γ be a closed path and $\Omega = \mathbb{C} \setminus \gamma^*$. If $z \in \Omega$, define

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2i\pi} \cdot \int_{\gamma} \frac{1}{w-z} \, dw$$

Then $\operatorname{Ind}_{\gamma} : \Omega \to \mathbb{Z}$ is constant on connected components of Ω and 0 on the unbounded component. $\operatorname{Ind}_{\gamma}(z)$ is called the **winding number** of γ around z.

Picture

proof Note that γ^* is compact. Hence $\exists R > 0$ such that $\gamma^* \subset D_R(0)$. But $D_R(0)^c$ is connected and must lie in a single component of Ω . Since all of the components live inside of $D_R(0)$, there is a unique unbounded component.

Now fix $z \in \Omega$. Then

$$2\pi i \operatorname{Ind}_{\gamma}(z) = \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t) - z} dt.$$

Let

$$\varphi(t) = \exp\left(\int_{a}^{t} \frac{\gamma'(t)}{\gamma(t) - z} dt\right).$$

We have: $Ind_{\gamma}(z) \in \mathbb{Z} \iff \varphi(b) = 1$. and $\varphi(t) \neq 0$ for all t:

Furthermore by the chain rule

$$\varphi'(t) =$$

This implies that

$$\frac{\varphi'(t)}{\varphi(t)} =$$

except for possibly a finite set $F \subseteq [a, b]$ where γ is not differentiable.

10/29/18

for $t \in [a, b] \setminus F$.

 $\forall t \in [a, b]$

Thus

$$\varphi'(t)(\gamma(t) - z) - \gamma'(t)\varphi(t) = 0$$

for $t \in [a, b] \setminus F$. Therefore let,

$$g(t) = \frac{\varphi(t)}{\gamma(t) - z}$$

Then for g(t) we have:

$$g'(t) =$$

Hence g(t) is continuous on [a, b] and g'(t) =So g is

Since
$$\varphi(a) =$$
,
 $g(t) =$

 $\implies \varphi(t) = \frac{\gamma(t)-z}{\gamma(a)-z}$ and since $\gamma(a) = \gamma(b), \quad \varphi(b) = 1$.

By Ch. 1 Theorem 12 applied to $X = [0,1], \varphi = \gamma, \nu = \gamma' \cdot \lambda$ we know that $\operatorname{Ind}_{\gamma}$ is analytic, hence continuous.

Picture

Since it is integer-valued, it must be constant on connected components. Finally, if $\gamma^* \subset D_R(0)$ and $|z| \geq R$,

$$|\operatorname{Ind}_{\gamma}(z)| \leq$$

So $|\operatorname{Ind}_{\gamma}(z)| < 1$ for z large enough, hence $\operatorname{Ind}_{\gamma}(z) = 0$.

10/29/18

Theorem 10 Let γ be a positively oriented circle with radius r > 0 centered at a: $\gamma(t) = e^{it} + a$ for $t \in [0, 2\pi]$. Then

$$\operatorname{Ind}_{\gamma}(a) = \begin{cases} 1 & \text{if } |z-a| < r \\ 0 & \text{if } |z-a| > r. \end{cases}$$

Picture

proof $\Omega = \mathbb{C} \setminus \gamma^*$ has two components and |z - a| > r is the unbounded one.

$$\operatorname{Ind}_{\gamma}(a) =$$

Theorem 11 (Fundamental Theorem for line integrals) Suppose $F \in \mathcal{H}(\Omega)$ and F' is continuous on Ω . If $\gamma : [a, b] \to \Omega$ is a path, then

$$\int_{\gamma} F'(z) \, dz = F(\gamma(b)) - F(\gamma(a)).$$

In particular,

$$\int_{\gamma} F'(z) \, dz = 0 \quad \text{for all closed path in } \Omega.$$

proof

$$\int_{\gamma} F'(z) \, dz =$$

Corollary 12 If γ be a closed path in Ω , then

(*)
$$\int_{\gamma} z^n dz = 0 \quad \text{for} \quad n \in \mathbb{N}.$$