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Lecture 1

Part I - MEASURE THEORY

Chapter 1 - σ algebras and measures

Outline: To give a subset of a set X a weight or measure we must restrict ourselves to
"good" subsets of X or elements of P(X). Such a collectionM⊂ P(X) is called a σ algebra.

Chapter 1.1 - Review - Riemann integral

Outline: 1.) A function f is Riemann integrable if it can be "approximated" by step
functions. These functions are de�ned by subdividing the domain.
2.) The Riemann integral does not have good convergence properties. We should look for a
better way of de�ning integration.

De�nition 1 (Partitions) A partition or subdivision P of an interval [a, b] is a �nite
sequence of points P = {(tk)k=0,..,n}, such that

a = t0 < t1 < t2 < . . . < tn−1 < tn = b.

• We call an interval (tk, tk+1) a subinterval of the partition P. We call the width wP of
the largest subinterval

wP = ‖P‖ = max{|tk+1− tk|, where k ∈ {0, 1, 2, . . . , n−1}} the mesh or norm of P.

• If for two partitions P1, P2 of [a, b] we have that P1 ⊂ P2. Then P2 is called a re�nement

of P1.

Example Draw a partition P of the interval [0, 10] and estimate its norm. Then �nd a
re�nement of P. Given two partitions P1 and P2 is there always a common re�nement?
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To de�ne the Riemann integral we �rst create step functions based on a partition P that give
an upper and lower bound on the area under the graph of f .

De�ntion 2 (upper and lower Riemann sums) Let f : [a, b] → R be a bounded func-
tion and P = {(tk)k=0,..,n} be a partition of [a, b],i.e.

a = t0 < t1 < t2 < . . . < tn−1 < tn = b.

We de�ne two step functions fU , fL : [a, b]→ R associated to f and P in the following way

Mk = sup{f(x), x ∈ (tk−1, tk)} and fU (x) =Mk for all x ∈ (tk−1, tk)

mk = inf{f(x), x ∈ (tk−1, tk)} and fL(x) = mk for all x ∈ (tk−1, tk).

If the partition P is important we will write fUP for fU and fL,P for fL.
Finally the Riemann sums of f with respect to P are the integrals

U(f,P) =

n∑
k=1

Mk · (tk − tk−1) =
∫ b

a
fU (x) dx (upper sum) and

L(f,P) =

n∑
k=1

mk · (tk − tk−1) =
∫ b

a
fL(x) dx (lower sum)

Note If P = {(tk)k=0,..,n} is a partition of [a, b], then we are not interested in the values of
the step function f on the points (tk)k=0,..,n of the partition. This is because for integration it
does not matter which values the the function takes on this �nite number of points.

Example Sketch a continuous function f in the interval [0, 10]. Using your partition P from the
previous example, sketch fU and fL and estimate the integrals U(f,P) and L(f,P).

Using this approximation with step functions we can try to �nd the "best approximating"
fU and fL by varying and re�ning the partition.
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De�nition 3 (Upper and lower Riemann integral) Let f : [a, b] → R be a bounded
function. The Riemann integrals of f are

R
∫ b

a
f(x) dx = inf{U(f,P) =

∫ b

a
fUP (x) dx, P partition of [a, b]} (upper integral)

R
∫ b

a
f(x) dx = sup{L(f,P) =

∫ b

a
fL,P(x), P partition of [a, b]} (lower integral) .

Finally we say that a function f is integrable if the upper and lower Riemann integral co-
incide. This means that the function can be approximated by greater and lower step functions
such that the corresponding integrals exists and are equal.

De�ntion 4 (Riemann integrable functions) Let f : [a, b] → R be a bounded function.
Then f is (Riemann) integrable on the interval [a, b] if

R
∫ b

a
f(x) dx = L = R

∫ b

a
f(x) dx.

In this case we write L = R
∫ b
a f(x) dx.

The set of Riemann integrable functions on [a, b] is denoted by R([a, b]).
Note: For any partition P of [a, b] we have that∫ b

a
fL(x) dx ≤

∫ b

a
fU (x) dx hence R

∫ b

a
f(x) dx ≤ R

∫ b

a
f(x) dx.

Examples 5

a) (in�nite comb) Let f : [0, 1]→ R be the function, such that

f(x) =

{
0
1

if
x ∈ R \Q
x ∈ Q .

Then f integrable on [0, 1].
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b) (popcorn function) Let g : [0, 1)→ R be the function, such that

g(x) =

{
0
1
q

if
x ∈ R \Q
x = p

q ∈ Q,
p
q in lowest term

Sketch the popcorn function for q = 2, 3, 4, 5.

Then g integrable on [0, 1].

De�nition 6 A subset S ⊂ R has measure zero if for all ε > 0 there are open intervals
(In(ε))n∈N such that

a) S ⊂
⋃

n∈N In(ε).

b)
∑

n∈N `(In(ε)) ≤ ε, where `((a, b)) = b− a.

We would like to de�ne integration in a way such that the functions in these two previous
examples have integral zero. More generally we would like to have that countable subsets of R
have measure zero and de�ne integration such that the integral over these sets is zero.

Example 7 Let C be a countable subset of R. Then C has measure zero.

proof Idea: We put "small enough" intervals around every point of C.
Fix ε > 0. Since C is countable, C = (cn)n∈N = {c1, c2, c3, . . .}. We set

Note 8 The countable union of countable sets has measure zero (see HW 1).
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Why should we not settle for the Riemann integral?

• The integral over countable subsets of R is not always zero.

• The de�nition is restricted to bounded functions and domains.

• R([a, b[) does not have good convergence properties.

Example 9 Consider a sequence of functions (fn)n∈N, such that fn : [0, 1]→ R, such that
for all n ∈ N

fn continuous and 0 ≤ fn(x) ≤ 1 for all x ∈ [0, 1]

If limn→∞ fn(x) = 0 for all x ∈ [0, 1]. Is it true that

lim
n→∞

R
∫ 1

0
fn(x) dx = 0 ?

This is in fact true, but very hard to prove. However this will be a simple result in our new
integration method using measure theory.

From Riemann to Lebesque

Idea: We de�ne integration the other way round. We look at the set I, such that f(I) in
an interval [y1, y2] on the y-axis. Then

y1 ·m(I) ≤
∫
I
f ≤ y2 ·m(I)

Re�ning the intervals now on the y-axis we get an estimate of the integral. Indeed we can de�ne
integration this way. However to this end we have to de�ne the measure m properly. If I is an
interval, we would have m(I) = `(I).

Example
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In general we would like to have a measure m : P(R)→ R, such that

a) m(∅) = 0

b) m(I) = `(I) for an interval I ⊂ R.

c) m(
⊎∞

k=1Ak) =
∑∞

k=1m(Ak).

d) m(A+ x) = m(A) for all x ∈ R (m is invariant under translation).

Remark 1.) Unfortunately this is not possible, as P(R) is too complex. This is a conse-
quence of Vitali's Theorem.
2.) In c) we want countable additivity. If we have additivity for �nite sets only, then we can not
pass to limits. If we take uncountable additivity, then if we have for p ∈ R that m(p) = 0, then
m(R) = 0 (using d)).

Chapter 1.2 - σ algebras

Outline To de�ne a measure we have to use the "right" subsets of X.

De�nition 1 (σ algebra) Let X be a set, a collectionM⊂ P(X) of subsets of X is called
a σ algebra if

a) X ∈M.

b) A ∈M⇒ Ac = X\A ∈M (M is closed under complements).

c) (Ak)k=1,...,∞ ⊂M⇒
⋃∞

k=1Ak ∈M (M is closed under countable unions).

In this case (X,M) is called a measurable space.


