10/26/18

Lecture 19

Corollary 10 Suppose f is analytic in Ω . Then f has derivatives of all orders in Ω , each of which is analytic in Ω .

Corollary 11 If f is analytic in Ω and $f(z) = \sum_{n \ge 0} a_n (z-a)^n$ for all $z \in D_r(a)$ then $a_k = \frac{f^{(k)}(a)}{k!}$. In particular, the power series expansion at a is unique.

proof $f^{(k)}(z) =$

We describe a process that produces analytic functions.

Theorem 12 (Analytic functions from integrals) Let ν be a complex measure on a measurable set (X, \mathcal{M}) , with $|\nu|(X) < \infty$, and let $\varphi : X \to \mathbb{C}$ be a measurable function and $\Omega \subseteq \mathbb{C}$ a domain such that $\varphi(X) \cap \Omega = \emptyset$. Then the function

$$f(z) = \int\limits_X \frac{1}{\varphi(x) - z} d\nu(x)$$

is analytic in Ω . Moreover, $f^{(k)}(z) = k! \int_X \frac{1}{(\varphi - z)^{k+1}} d\nu$ for $k \in \mathbb{N}$.

Picture

proof Let $a \in \Omega$ and r > 0 such that $D_r(a) \subseteq \Omega$. Note that if $z \in D_r(a)$ and $x \in X$ then

$$\left|\frac{z-a}{\varphi(x)-a}\right| \le$$

Looking at the geometric series $\sum_{m\geq 0} q^m$ with $q = \frac{z-a}{\varphi(x)-a}$, we see

$$\sum_{m\geq 0} \frac{(z-a)^m}{(\varphi(x)-a)^m} =$$

10/26/18

This means that the series converges for $|z - a| \le r$ and

$$\frac{1}{\varphi(x) - z} =$$

and the convergence is uniform in X for each $z \in D_r(a)$.

Since $|\nu|(X) < \infty$,

$$f(z) = \int\limits_X \frac{1}{\varphi(x) - z} d\nu(x) =$$

and the right hand side convergence for all $z \in D_r(a)$. Therefore, f is analytic in Ω and

$$f^{(k)}(a) = \square$$

Corollary 13 In the previous theorem, the power series for f about $a \in \Omega$ converges in any disc $D_r(a)$ contained in Ω .

Chapter 2 - Curves and integrals over curves

Definition 1 If X is a topological space, a **curve** in X is a continuous map $\gamma : [a, b] \to X$. The image $\gamma([a, b])$ is denoted by γ^* . If $\gamma(a) = \gamma(b)$, we say that γ is closed.

Note $\gamma_1^{\star} = \gamma_2^{\star} \not\implies \gamma_1 = \gamma_2$. Also, there are surjective maps $[0,1] \rightarrow [0,1]^2$.

Definition 2 A closed curve γ in X is called **simple** if

$$a \le t < s < b \implies \gamma(t) \ne \gamma(s).$$

Picture

10/26/18

Theorem 3 (Jordan Curve Theorem) The complement of a simple closed curve γ in \mathbb{C} consists of two open connected components, one of which is bounded and both of which have γ^* as their common boundary.

Picture

Definition 4 A **path** in \mathbb{C} is a piecewise continuously differentiable curve $\gamma : [a, b] \rightarrow \mathbb{C}$. Thus, there exists a subdivision $\mathcal{D} = \{a = t_0 < t_1 < \ldots < t_n < b\}$ of [a, b] such that γ' is continuous on $[t_{i-1}, t_i]$ for $i \in \{1, \ldots, n\}$.

One-sided derivatives exist at each t_i .

Definition 5 If $\gamma : [a, b] \to \mathbb{C}$ is a path and $f : \gamma^* \to \mathbb{C}$ is continuous, we define

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.$$

The **length** of γ is

$$\ell(\gamma) := \int_{a}^{b} \left| \gamma'(t) \right| dt.$$

Definition 6 Two paths γ_1 and γ_2 with $\gamma_1^* = \gamma_2^* := \gamma^*$ are **equivalent** if for all $f \in C(\gamma^*)$, we have

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$$

Example (Reparametrization) Let $\gamma : [a, b] \to \mathbb{C}$ be a path and $\varphi : [c, d] \to [a, b]$ a bijective continuously differentiable map. Then $\gamma \circ \varphi : [c, d] \to \mathbb{C}$ is equivalent to γ .

10/26/18

Remark 7

- a) Every path can be reparametrized, such that [a, b] = [0, 1].
- b) If γ_1, γ_2 are paths such that the terminal point of γ_1 is the initial point of γ_2 , then there is a path $\gamma_1 + \gamma_2$, called the **join** of γ_1 and γ_2 , such that

$$\int_{\gamma_1+\gamma_2} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \quad \text{for all} \quad f \in C(\gamma_1^* \cup \gamma_1^*).$$

Picture

c) If $\gamma: [a, b] \to \mathbb{C}$ is a path, then there is an **inverse path** $-\gamma: [a, b] \to \mathbb{C}$ given by

$$-\gamma(t) = \gamma(a+b-t)$$
, such that $\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$ for all $f \in C(\gamma^*)$.

d) If $u, w \in \mathbb{C}$, let [u, w] be the path $t \to u + t(w - u)$, for $t \in [0, 1]$ which parametrizes the **line segment** between u and w. Then

$$\int_{[u,w]} f(z) \, dz = (w-u) \cdot \int_0^1 f(u+t(w-u)) \, dt \text{ for all } f \in C([u,w]).$$

e) If $a, b, c \in \mathbb{C}$, then $\triangle(a, b, c) = \{\lambda_1 a + \lambda_2 b + \lambda_3 c, \text{ where } \lambda_i \ge 0, \lambda_1 + \lambda_2 + \lambda_3 = 1\}$. Note that

$$\int_{\partial \triangle (a,bc)} f(z) \, dz = \int_{[a,b]} f(z) \, dz + \int_{[b,c]} f(z) \, dz + \int_{[c,a]} f(z) \, dz.$$

Here the left-hand side is invariant under cyclic permutations of the (a, b, c) and only changes sign if (a, b, c) is replaced by (a, c, b).

10/26/18

Reminder $e^{x+iy} \stackrel{Def.}{=} e^x \cdot (\cos(y) + i\sin(y))$. Then

$$f(z) = e^z \in \mathcal{H}(\mathbb{C})$$
 and $f' = f$.

Picture Plot e^z using the grid map i.e. look at $\{f(x+iy), x = const.\}$ and $\{f(x+iy), y = const.\}$

Furthermore $e^w = 1 \leftrightarrow w = 2\pi \cdot i \cdot k$ with $k \in \mathbb{Z}$.

Remark 8 For any continuous $f: \Omega \to \mathbb{C}$ we have

$$\left| \int_{\gamma} f(z) \, dz \right| \leq \int_{\gamma} |f(z)| \, dz \leq M\ell(\gamma) \quad \text{where} \quad M = \max\{|f(z)|, z \in \gamma^*\}.$$

Theorem 9 Let γ be a closed path and $\Omega = \mathbb{C} \setminus \gamma^*$. If $z \in \Omega$, define

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2i\pi} \cdot \int_{\gamma} \frac{1}{w-z} \, dw$$

Then $\operatorname{Ind}_{\gamma} : \Omega \to \mathbb{Z}$ is constant on connected components of Ω and 0 on the unbounded component.

Picture