Math 103: Measure Theory and Complex Analysis
 Fall 2018

Lecture 19

Corollary 10 Suppose f is analytic in Ω. Then f has derivatives of all orders in Ω, each of which is analytic in Ω.

Corollary 11 If f is analytic in Ω and $f(z)=\sum_{n \geq 0} a_{n}(z-a)^{n}$ for all $z \in D_{r}(a)$ then $a_{k}=\frac{f^{(k)}(a)}{k!}$. In particular, the power series expansion at a is unique.
proof $f^{(k)}(z)=$
We describe a process that produces analytic functions.
Theorem 12 (Analytic functions from integrals) Let ν be a complex measure on a measurable set (X, \mathcal{M}), with $|\nu|(X)<\infty$, and let $\varphi: X \rightarrow \mathbb{C}$ be a measurable function and $\Omega \subseteq \mathbb{C}$ a domain such that $\varphi(X) \cap \Omega=\emptyset$. Then the function

$$
f(z)=\int_{X} \frac{1}{\varphi(x)-z} d \nu(x)
$$

is analytic in Ω. Moreover, $f^{(k)}(z)=k!\int_{X} \frac{1}{(\varphi-z)^{k+1}} d \nu$ for $k \in \mathbb{N}$.
Picture
proof Let $a \in \Omega$ and $r>0$ such that $D_{r}(a) \subseteq \Omega$. Note that if $z \in D_{r}(a)$ and $x \in X$ then

$$
\left|\frac{z-a}{\varphi(x)-a}\right| \leq
$$

Looking at the geometric series $\sum_{m \geq 0} q^{m}$ with $q=\frac{z-a}{\varphi(x)-a}$, we see

$$
\sum_{m \geq 0} \frac{(z-a)^{m}}{(\varphi(x)-a)^{m}}=
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

This means that the series converges for $|z-a| \leq r$ and

$$
\frac{1}{\varphi(x)-z}=
$$

and the convergence is uniform in X for each $z \in D_{r}(a)$.
Since $|\nu|(X)<\infty$,

$$
f(z)=\int_{X} \frac{1}{\varphi(x)-z} d \nu(x)=
$$

and the right hand side convergence for all $z \in D_{r}(a)$. Therefore, f is analytic in Ω and

$$
f^{(k)}(a)=
$$

Corollary 13 In the previous theorem, the power series for f about $a \in \Omega$ converges in any disc $D_{r}(a)$ contained in Ω.

Chapter 2 - Curves and integrals over curves

Definition 1 If X is a topological space, a curve in X is a continuous map $\gamma:[a, b] \rightarrow X$. The image $\gamma([a, b])$ is denoted by γ^{\star}. If $\gamma(a)=\gamma(b)$, we say that γ is closed.

Note $\gamma_{1}^{\star}=\gamma_{2}^{\star} \Longleftrightarrow \gamma_{1}=\gamma_{2}$. Also, there are surjective maps $[0,1] \rightarrow[0,1]^{2}$.
Definition 2 A closed curve γ in X is called simple if

$$
a \leq t<s<b \Longrightarrow \gamma(t) \neq \gamma(s) .
$$

Picture

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Theorem 3 (Jordan Curve Theorem) The complement of a simple closed curve γ in \mathbb{C} consists of two open connected components, one of which is bounded and both of which have γ^{\star} as their common boundary.

Picture

Definition 4 A path in \mathbb{C} is a piecewise continuously differentiable curve $\gamma:[a, b] \rightarrow$ \mathbb{C}. Thus, there exists a subdivision $\mathcal{D}=\left\{a=t_{0}<t_{1}<\ldots<t_{n}<b\right\}$ of $[a, b]$ such that γ^{\prime} is continuous on $\left[t_{i-1}, t_{i}\right]$ for $i \in\{1, \ldots, n\}$.

One-sided derivatives exist at each t_{i}.
Definition 5 If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a path and $f: \gamma^{\star} \rightarrow \mathbb{C}$ is continuous, we define

$$
\int_{\gamma} f(z) d z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

The length of γ is

$$
\ell(\gamma):=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

Definition 6 Two paths γ_{1} and γ_{2} with $\gamma_{1}^{\star}=\gamma_{2}^{\star}:=\gamma^{\star}$ are equivalent if for all $f \in C\left(\gamma^{\star}\right)$, we have

$$
\int_{\gamma_{1}} f(z) d z=\int_{\gamma_{2}} f(z) d z
$$

Example (Reparametrization) Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a path and $\varphi:[c, d] \rightarrow[a, b]$ a bijective continuously differentiable map. Then $\gamma \circ \varphi:[c, d] \rightarrow \mathbb{C}$ is equivalent to γ.

Math 103: Measure Theory and Complex Analysis Fall 2018

Remark 7

a) Every path can be reparametrized, such that $[a, b]=[0,1]$.
b) If γ_{1}, γ_{2} are paths such that the terminal point of γ_{1} is the initial point of γ_{2}, then there is a path $\gamma_{1}+\gamma_{2}$, called the join of γ_{1} and γ_{2}, such that

$$
\int_{\gamma_{1}+\gamma_{2}} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z \text { for all } f \in C\left(\gamma_{1}^{*} \cup \gamma_{1}^{*}\right)
$$

Picture

c) If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a path, then there is an inverse path $-\gamma:[a, b] \rightarrow \mathbb{C}$ given by

$$
-\gamma(t)=\gamma(a+b-t), \text { such that } \int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z \text { for all } f \in C\left(\gamma^{*}\right) .
$$

d) If $u, w \in \mathbb{C}$, let $[u, w]$ be the path $t \rightarrow u+t(w-u)$, for $t \in[0,1]$ which parametrizes the line segment between u and w. Then

$$
\int_{[u, w]} f(z) d z=(w-u) \cdot \int_{0}^{1} f(u+t(w-u)) d t \text { for all } f \in C([u, w])
$$

e) If $a, b, c \in \mathbb{C}$, then $\triangle(a, b, c)=\left\{\lambda_{1} a+\lambda_{2} b+\lambda_{3} c\right.$, where $\left.\lambda_{i} \geq 0, \lambda_{1}+\lambda_{2}+\lambda_{3}=1\right\}$. Note that

$$
\int_{\partial \triangle(a, b c)} f(z) d z=\int_{[a, b]} f(z) d z+\int_{[b, c]} f(z) d z+\int_{[c, a]} f(z) d z .
$$

Here the left-hand side is invariant under cyclic permutations of the (a, b, c) and only changes sign if (a, b, c) is replaced by (a, c, b).

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Reminder $e^{x+i y} \stackrel{\text { Def. }}{=} e^{x} \cdot(\cos (y)+i \sin (y))$. Then

$$
f(z)=e^{z} \in \mathcal{H}(\mathbb{C}) \text { and } f^{\prime}=f
$$

Picture Plot e^{z} using the grid map i.e. look at $\{f(x+i y), x=$ const. $\}$ and $\{f(x+i y), y=$ const. $\}$

Furthermore $e^{w}=1 \leftrightarrow w=2 \pi \cdot i \cdot k$ with $k \in \mathbb{Z}$.
Remark 8 For any continuous $f: \Omega \rightarrow \mathbb{C}$ we have

$$
\left|\int_{\gamma} f(z) d z\right| \leq \int_{\gamma}|f(z)| d z \leq M \ell(\gamma) \text { where } M=\max \left\{|f(z)|, z \in \gamma^{*}\right\} .
$$

Theorem 9 Let γ be a closed path and $\Omega=\mathbb{C} \backslash \gamma^{*}$. If $z \in \Omega$, define

$$
\operatorname{Ind}_{\gamma}(z)=\frac{1}{2 i \pi} \cdot \int_{\gamma} \frac{1}{w-z} d w
$$

Then $\operatorname{Ind}_{\gamma}: \Omega \rightarrow \mathbb{Z}$ is constant on connected components of Ω and 0 on the unbounded component.
Picture

