Math 103: Measure Theory and Complex Analysis
 Fall 2018

Lecture 18

Part II - COMPLEX ANALYSIS

Outline In real analysis, everything that could go wrong does. In complex analysis, everything that you dream of is true.

Chapter 1 - Holomorphic functions

Definition 1 A subset $A \subset \mathbb{C}$ is called connected if it is not the union of two disjoint non-empty open sets.
Picture

Definition 2 An open subset $\Omega \subseteq \mathbb{C}$ is called a domain. A nonempty connected domain A is called a region.

Definition 3 If $E \subseteq \mathbb{C}$ and $x \in E$ then the connected component of x in E is

$$
C(x)=\bigcup\{A \subseteq \mathbb{C} \mid x \in A \subseteq E, A \text { is connected }\}
$$

Note that $C(x)$ is connected and $C(x) \cap C(y) \neq \emptyset \Leftrightarrow C(x)=C(y)$. Since

$$
D_{r}(a)=\{z \in \mathbb{C}| | z-a \mid<r\}
$$

is connected, it follows that a connected component of any domain is the union of disks and therefore open. In other words, every domain is a union of regions.

Definition 4 Let $\Omega \subseteq \mathbb{C}$ be a domain and $z \in \Omega$. We say that $f: \Omega \rightarrow \mathbb{C}$ is differentiable at z if

$$
f^{\prime}(z)=L=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h} \quad \text { exists. }
$$

This means for all $\epsilon>0$ there is $\delta>0$, such that

Math 103: Measure Theory and Complex Analysis Fall 2018

Definiton 5 We say that f is holomorphic on Ω if $f^{\prime}(z)$ exists for all $z \in \Omega$. Denote by $\mathcal{H}(\Omega)$ the collection of all holomorphic functions on Ω.

Interpreting $z=x+i y=(x, y)$ as a point in $\mathbb{R}^{2} \simeq \mathbb{C}$. We can see any function $f: \mathbb{C} \rightarrow \mathbb{C}$ as a deformation or transformation of the plane: This can be seen by splitting f into the real and imaginary part

$$
\begin{aligned}
f(z)=f(x+i y)=f(x, y) & =\operatorname{Re}(f)(x, y)+i \operatorname{Im}(f)(x, y) \\
& =(\operatorname{Re}(f)(x, y), \operatorname{Im}(f)(x, y))=(u(x, y), v(x, y))
\end{aligned}
$$

Picture

For fixed $z=x+i y$ and for $t \in \mathbb{R}$ we take once $h=t$ and $h=i t$ in Definition 5. Writing $f=\operatorname{Re}(f)+i \operatorname{Im}(f)=u+i v$ we get for a holomorphic function:

$$
\begin{aligned}
f^{\prime}(z)=\lim _{t \rightarrow 0} \frac{f(z+t)-f(z)}{t} & = \\
f^{\prime}(z)=\lim _{t \rightarrow 0} \frac{f(z+i t)-f(z)}{i t} & = \\
& =
\end{aligned}
$$

Hence

$$
\frac{\partial u(x, y)}{\partial x}=\frac{\partial v(x, y)}{\partial y} \text { and } \frac{\partial v(x, y)}{\partial x}=-\frac{\partial u(x, y)}{\partial y}
$$

These are the Cauchy-Riemann Equations.

Math 103: Measure Theory and Complex Analysis Fall 2018

The converse is also true:
Theorem 6 (Cauchy-Riemann Equations (CRE)) Let $f: \Omega \rightarrow \mathbb{C}$ is a holomorphic function, where $f=(u, v): \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ if and only if $f \mathbb{C} \simeq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is real differentiable and

$$
D f=D(u, v)=\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
-\frac{\partial u}{\partial y} & \frac{\partial u}{\partial x}
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \text { and } \operatorname{det}(D f)=a^{2}+b^{2} .
$$

proof The proof is an exercise.

Conformal maps

Conformal maps preserve the angles of intersecting curves. We will show that holomorphic maps are conformal maps.
Picture

For two curves $\gamma, \delta:[-1,1] \rightarrow \mathbb{C} \simeq \mathbb{R}^{2}$ with $\gamma(0)=\delta(0)=p$ and $v=\gamma^{\prime}(0), w=\delta^{\prime}(0)$ we get two curves $f \circ \gamma$ and $f \circ \delta$ in the image. Then

$$
\begin{gathered}
(f \circ \gamma)^{\prime}(0)=\left.D f\right|_{\gamma(0)} \cdot \gamma^{\prime}(0)=D f(p) \cdot v \\
(f \circ \delta)^{\prime}(0)=\left.D f\right|_{\delta(0)} \cdot \delta^{\prime}(0)=D f(p) \cdot w .
\end{gathered}
$$

For the dot product we obtain

$$
\begin{aligned}
& (f \circ \gamma)^{\prime}(0) \bullet(f \circ \delta)^{\prime}(0)=(D f(p) \cdot v)^{T} \cdot D f(p) \cdot w \\
& \quad=v^{T} D f(p)^{T} \cdot D f(p) \cdot w=\operatorname{det}(D f(p))(v \bullet w) .
\end{aligned}
$$

Looking at the angles between the curves we get

$$
\begin{array}{r}
\cos (\angle(v, w)) \\
= \\
\cos (\angle(D f(p) v, D f(p) w))
\end{array}=
$$

Hence f preserves the angles of intersection of curves at any point p, where $D f(p) \neq 0$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Conversely if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a conformal map, such that $\operatorname{Df}(p) \neq 0$ then f it either preserves the orientation of vectors in which case it is holomorphic or it exchanges the orientation of vectors in which case it is anti-holomorphic.

Picture

We have proven:
Theorem 7 If $f: \Omega \rightarrow \mathbb{C}$ holomorphic, then f is conformal on $\Omega \backslash\{p \in \Omega: D f(p) \neq 0\}$.

Reminder on power series

If $z \in \mathbb{C}$ and $\left\{a_{n}\right\}_{n \geq 0}$ is a sequence in \mathbb{C},

$$
\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}
$$

has a radius of convergence $R \in[0, \infty]$ such that the series converges uniformly and absolutely on $D_{r}\left(z_{0}\right)$ provided that $0 \leq r<R$ and diverges for all $z \notin \overline{D_{R}\left(z_{0}\right)}$. In fact,

$$
\frac{1}{R}=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\limsup _{n \geq 0}\left|a_{n}\right|^{1 / n}
$$

Definition 8 We say that $f: \Omega \rightarrow \mathbb{C}$ is analytic in a domain Ω if for all $a \in \Omega$ there is an $r>0$ such that $D_{r} \subseteq \Omega$ and there exists $\left\{a_{n}\right\}_{n \geq 0}$ such that for all $z \in D_{r}(a)$ we have

$$
f(z)=\sum_{n \geq 0} a_{n}(z-a)^{n} .
$$

Out first goal will be to show that f is holomorphic on Ω if and only if f is analytic on Ω.

Math 103: Measure Theory and Complex Analysis Fall 2018

Theorem 9 Suppose that f is analytic on Ω. Then $f \in \mathcal{H}(\Omega)$ and f^{\prime} is analytic in Ω. In fact, if $f(z)=\sum_{n \geq 0} a_{n}(z-a)^{n}$ for $z \in D_{r}(a)$, then

$$
f^{\prime}(z)=\sum_{n \geq 1} n a_{n}(z-a)^{n-1} \text { for } z \in D_{r}(a) .
$$

Picture

proof We first note that both power series have the same radius of convergence:

Let

$$
g(z)=\sum_{n \geq 1} n a_{n}(z-a)^{n-1} \text { for } z \in D_{r}(a) .
$$

Replacing $z-a$ with z if necessary, we may assume $a=0$. Fix $w \in D_{r}(0)$ and $\rho>0$ such that $0 \leq|w|<\rho<r$. If $z \neq w$ then

$$
\begin{aligned}
\frac{f(z)-f(w)}{z-w}-g(w) & = \\
& =\sum_{n \geq 1} a_{n} A_{n}
\end{aligned}
$$

with $A_{1}=\quad$ and $A_{n}=\quad$ if $n>1$. One can check that if $n>1$ then

$$
A_{n}=(z-w) \sum_{k=1}^{n-1} k w^{k-1} z^{n-k-1} .
$$

Thus if $|z|<\rho$ and $|w|<\rho$, we see that

$$
\left|A_{n}\right| \leq
$$

Thus

$$
\left|\frac{f(z)-f(w)}{z-w}-g(w)\right| \leq
$$

Since $\lim \sup _{n}\left|a_{n}\right|^{1 / n}=\frac{1}{R}$ and $\rho<r \leq R$ we see that the series on the right-hand side converges by the root test. Therefore, $\left|\frac{f(z)-f(w)}{z-w}-g(w)\right| \leq|z-w| M$ as long as $|z|<\rho$. Thus $f^{\prime}(w)$ exists and equals $g(w)$.

