Math 103: Measure Theory and Complex Analysis
 Fall 2018

10/22/18

Lecture 17

Chapter 2.8. - The Radon-Nikodym Theorem

Outline Let (X, \mathcal{M}, μ) be a measure space. We show that under certain simple conditions we have for another measure $\nu \ll \mu$ and $E \in \mathcal{M}$

$$
\nu(E)=\int_{E} f d \mu, \quad \text { where } f: X \rightarrow[0, \infty) \text { measurable. }
$$

In a sense this means that measuring and integrating are the same thing.

Picture

We recall
Ch. 1.6, Theorem 10 Let (X, \mathcal{M}, μ) be a measure space and $f: X \rightarrow[0, \infty)$ be a measurable function. Then there is a measure μ_{f} on X given by

$$
\begin{aligned}
\mu_{f}: \mathcal{M} & \rightarrow[0, \infty] \\
E & \mapsto \mu_{f}(E)=\int_{E} f d \mu
\end{aligned}
$$

Moreover, if g is measurable on X then

$$
\int_{X} g d \mu_{f}=\int_{X} g f d \mu .
$$

Definition 1 Let μ and ν be measures on a measurable set (X, \mathcal{M}). We say that ν is absolutely continuous with respect to μ and we write $\nu \ll \mu$ if $\mu(E)=0 \Rightarrow \nu(E)=0$.

Note 2 In Chapter 1.6. we have also shown that $\mu_{f} \ll \mu$.
Example If f is a probability density then $\mu_{f} \ll \mu$.

Math 103: Measure Theory and Complex Analysis Fall 2018

Theorem 3 (Radon-Nikodym) If μ and ν are finite measures on (X, \mathcal{M}) such that $\nu \ll \mu$ then there exists a measurable function

$$
f: X \rightarrow[0, \infty) \text { such that } \nu=\mu_{f} .
$$

If g is any function such that $\nu=\mu_{g}$, then $f=g$ almost everywhere (with respect to μ).
proof Idea: The idea is to construct explicitly a function f that satisfies the conditions of the theorem. We will make use of the Hahn decomposition. We first consider the case where both measures are finite.
1.) $\mu(X)<\infty$ and $\nu(X)<\infty$.
a) Partitioning X

We first divide up X into suitable sets, where an approximation of f can be defined by simple functions. Fix $c>0$. Then $\nu-c \mu$ is a signed measure. Let $\{P(c), N(c)\}$ be a Hahn decomposition for $\nu-c \mu$. We have:

$$
c_{2} \geq c_{1} \Rightarrow \quad \text { for all } E \in \mathcal{M}
$$

Picture

Now consider $\bigcup_{k \geq 1} N(k c)$ and make it disjoint. We set:

$$
\begin{aligned}
& A_{1}=N(c) \\
& A_{k}=N(k c) \backslash \bigcup_{j<k} N(j c)=
\end{aligned}
$$

We see

$$
\bigcup_{k \geq 1} N(k c)=\biguplus_{k \geq 1} A_{k}
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

If $E \subset A_{k}$ and $E \in \mathcal{M}$ then

$$
\begin{array}{cc}
E \subseteq N(k c) \text { so } & \\
E \subseteq P((k-1) c) \text { so } & \text { hence } \\
& (k-1) c \mu(E) \leq \nu(E) \leq k c \mu(E) . \tag{1}
\end{array}
$$

This means that heuristically $(k-1) c \mu \leq \nu \leq k c \mu$ on A_{k}. Let

$$
B=X \backslash \biguplus_{k \geq 1} A_{k}=
$$

Since for any $k \in \mathbb{N}$ we have $B \subset P(k c)$ and therefore $0 \leq \nu(B)-k c \mu(B)$. Hence

As k may be chosen to be arbitrarily large, this implies $\mu(B)=0$ and therefore $\nu(B)=0$ since $\nu \ll \mu$.

b) Construction of f

We will use (1) to construct a function f that satisfies the conditions of the theorem. Let

$$
g_{c}(x)= \begin{cases}(k-1) c & \text { if } x \in A_{k} \\ 0 & \text { if } x \in B\end{cases}
$$

We see that $g_{c}=\sum_{k \geq 1}(k-1) c \mathbb{1}_{A_{k}}$. Then for all $E \in \mathcal{M}$, we have by (1)

$$
\begin{equation*}
\int_{E} g_{c} d \mu \leq \tag{2}
\end{equation*}
$$

We now make a "refinement" using the parameter c. To this end let $f_{n}=g_{2^{-n}}$, and assume $m \leq n$ in \mathbb{N}. We want to show that $\left(f_{n}\right)_{n}$ converges. To this end we note that by (2)

$$
\begin{align*}
& \int_{E} f_{n} d \mu \leq \nu(E) \leq \\
& \int_{E} f_{m} d \mu \leq \nu(E) \leq \tag{3}
\end{align*}
$$

so, as $2^{-n} \leq 2^{-m}$ we have

$$
\left|\int_{E}\left(f_{n}-f_{m}\right) d \mu\right| \leq
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Apply this with $E=E_{+}:=\left\{x \in X \mid f_{n}(x)-f_{m}(x) \geq 0\right\}$ and $E=E_{-}:=\left\{x \in X \mid f_{n}(x)-f_{m}(x)<0\right\}$ to conclude

$$
\int_{X}\left|f_{n}-f_{m}\right| d \mu \leq
$$

In other words, $\left(f_{n}\right)_{n \geq 1}$ is a Cauchy sequence in $L^{1}(X, \mathcal{M}, \mu)$. Therefore, by Ch. 2.6. Prop. 6,7 we can extract a subsequence $\left(f_{n_{k}}\right)_{k \geq 1}$ such that $f_{n_{k}} \underset{k \rightarrow \infty}{ } f$ almost everywhere. Thus we can assume $f(x) \geq 0$ for each $x \in X$.

$$
\left|\int_{E} f_{n} d \mu-\int_{E} f d \mu\right| \leq
$$

As the latter goes to zero for n to infinity by the $\Delta \neq$ we have that

$$
\int_{E} f_{n} d \mu \underset{n \rightarrow \infty}{\rightarrow} \int_{E} f d \mu .
$$

Returning to (3):

$$
\nu(E)=\lim _{n \rightarrow \infty} \int_{E} f_{n} d \mu=\int_{E} f d \mu
$$

Can you prove uniqueness?

Math 103: Measure Theory and Complex Analysis Fall 2018

2.) ν and μ are σ finite

Now we extend the result to the σ-finite case: Assume that

$$
X=\bigcup_{n \geq 1} X_{n} \text { with } X_{n} \subset X_{n+1} \text { and } \nu\left(X_{n}\right)<\infty, \mu\left(X_{n}\right)<\infty \text { for all } n \in \mathbb{N} .
$$

We know that we can find $h_{n}: X \rightarrow[0, \infty)$ such that

1. $\left.h_{n}(x)\right|_{X_{n}^{C}} \equiv 0$,
2. For all $E \in \mathcal{M}, E \subset X_{n}$ implies $\nu(E)=\int_{X_{n}} h_{n} d \mu$.

Now, if $n \leq m$ and $E \subseteq X_{n}$, then $\int_{E} h_{n} d \mu=\int_{E} h_{m} d \mu$.

Picture

Thus $\left.h_{n}\right|_{X_{n}}=\left.h_{m}\right|_{X_{n}}$ almost everywhere. Let $f_{n}(x)=\max \left\{h_{1}(x), \ldots, h_{n}(x)\right\}=h_{n}(x)$ almost everywhere with respect to μ. Then $f_{n} \nearrow f: X \rightarrow[0, \infty]$. If $E \in \mathcal{M}$ then

$$
\begin{aligned}
\nu(E) & =\lim _{n \rightarrow \infty} \nu\left(E \cap X_{n}\right) \\
& = \\
& = \\
& =
\end{aligned}
$$

Now let $A=\{x \mid f(x)=+\infty\}$. We see $\mu\left(A \cap X_{n}\right)=0$ (otherwise $\nu\left(A \cap X_{n}\right)=\infty$). Thus $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A \cap X_{n}\right)=0$ and we can assume $f: X \rightarrow[0, \infty)$. This completes our proof.

