10/22/18

Lecture 17

Chapter 2.8. - The Radon-Nikodym Theorem

Outline Let (X, \mathcal{M}, μ) be a measure space. We show that under certain simple conditions we have for another measure $\nu \ll \mu$ and $E \in \mathcal{M}$

$$\nu(E) = \int_E f \, d\mu, \quad \text{where } f: X \to [0, \infty) \quad \text{measurable}$$

In a sense this means that measuring and integrating are the same thing.

Picture

We recall

Ch. 1.6, Theorem 10 Let (X, \mathcal{M}, μ) be a measure space and $f : X \to [0, \infty)$ be a measurable function. Then there is a measure μ_f on X given by

$$\mu_f : \mathcal{M} \to [0, \infty]$$
$$E \mapsto \mu_f(E) = \int_E f d\mu$$

Moreover, if g is measurable on X then

$$\int_X g \, d\mu_f = \int_X g f \, d\mu_f$$

Definition 1 Let μ and ν be measures on a measurable set (X, \mathcal{M}) . We say that ν is **absolutely continuous** with respect to μ and we write $\nu \ll \mu$ if $\mu(E) = 0 \Rightarrow \nu(E) = 0$.

Note 2 In Chapter 1.6. we have also shown that $\mu_f \ll \mu$.

Example If f is a probability density then $\mu_f \ll \mu$.

Theorem 3 (Radon-Nikodym) If μ and ν are finite measures on (X, \mathcal{M}) such that $\nu \ll \mu$ then there exists a measurable function

$$f: X \to [0, \infty)$$
 such that $\nu = \mu_f$.

If g is any function such that $\nu = \mu_g$, then f = g almost everywhere (with respect to μ).

proof Idea: The idea is to construct explicitly a function f that satisfies the conditions of the theorem. We will make use of the **Hahn decomposition**. We first consider the case where both measures are finite.

1.) $\mu(X) < \infty$ and $\nu(X) < \infty$.

a) Partitioning X

We first divide up X into suitable sets, where an approximation of f can be defined by simple functions. Fix c > 0. Then $\nu - c\mu$ is a signed measure. Let $\{P(c), N(c)\}$ be a Hahn decomposition for $\nu - c\mu$. We have:

$$c_2 \ge c_1 \Rightarrow$$
 for all $E \in \mathcal{M}$.

Picture

Now consider $\bigcup_{k\geq 1} N(kc)$ and make it disjoint. We set:

$$\begin{split} A_1 &= N(c) \\ A_k &= N(kc) \backslash \bigcup_{j < k} N(jc) = \end{split}$$

We see

$$\bigcup_{k \ge 1} N(kc) = \biguplus_{k \ge 1} A_k.$$

10/22/18

If $E \subset A_k$ and $E \in \mathcal{M}$ then

$$E \subseteq N(kc) \text{ so}$$

$$E \subseteq P((k-1)c) \text{ so} , \text{ hence}$$

$$(1)$$

This means that heuristically $(k-1)c\mu \leq \nu \leq kc\mu$ on A_k . Let

$$B = X \setminus \biguplus_{k \ge 1} A_k =$$

Since for any $k \in \mathbb{N}$ we have $B \subset P(kc)$ and therefore $0 \leq \nu(B) - kc\mu(B)$. Hence

As k may be chosen to be arbitrarily large, this implies $\mu(B) = 0$ and therefore $\nu(B) = 0$ since $\nu \ll \mu$.

b) Construction of f

We will use (1) to construct a function f that satisfies the conditions of the theorem. Let

$$g_c(x) = \begin{cases} (k-1)c & \text{if } x \in A_k \\ 0 & \text{if } x \in B. \end{cases}$$

We see that $g_c = \sum_{k \ge 1} (k-1)c\mathbb{1}_{A_k}$. Then for all $E \in \mathcal{M}$, we have by (1)
$$\int g_c du \le du \le du \le du$$
(2)

$$\int_{E} g_c d\mu \le \tag{2}$$

We now make a "refinement" using the parameter c. To this end let $f_n = g_{2^{-n}}$, and assume $m \leq n$ in \mathbb{N} . We want to show that $(f_n)_n$ converges. To this end we note that by (2)

$$\int_{E} f_{n} d\mu \leq \nu(E) \leq \qquad \text{and} \\
\int_{E} f_{m} d\mu \leq \nu(E) \leq \qquad (3)$$

so, as $2^{-n} \leq 2^{-m}$ we have

$$\left| \int\limits_E (f_n - f_m) d\mu \right| \le$$

10/22/18

Apply this with $E = E_+ := \{x \in X \mid f_n(x) - f_m(x) \ge 0\}$ and $E = E_- := \{x \in X \mid f_n(x) - f_m(x) < 0\}$ to conclude

•

$$\int\limits_X |f_n - f_m| \, d\mu \le$$

In other words, $(f_n)_{n\geq 1}$ is a Cauchy sequence in $L^1(X, \mathcal{M}, \mu)$. Therefore, by **Ch. 2.6. Prop. 6,7** we can extract a subsequence $(f_{n_k})_{k\geq 1}$ such that $f_{n_k} \xrightarrow[k\to\infty]{} f$ almost everywhere. Thus we can assume $f(x) \geq 0$ for each $x \in X$.

$$\left|\int\limits_E f_n d\mu - \int\limits_E f d\mu\right| \leq$$

As the latter goes to zero for n to infinity by the $\Delta \neq$ we have that

$$\int_E f_n d\mu \xrightarrow[n \to \infty]{} \int_E f d\mu.$$

Returning to (3):

$$\nu(E) = \lim_{n \to \infty} \int_{E} f_n d\mu = \int_{E} f d\mu.$$

Can you prove uniqueness?

10/22/18

2.) ν and μ are σ finite

Now we extend the result to the σ -finite case: Assume that

$$X = \bigcup_{n \ge 1} X_n$$
 with $X_n \subset X_{n+1}$ and $\nu(X_n) < \infty, \mu(X_n) < \infty$ for all $n \in \mathbb{N}$.

We know that we can find $h_n: X \to [0,\infty)$ such that

- 1. $h_n(x)|_{X_n^C} \equiv 0$,
- 2. For all $E \in \mathcal{M}$, $E \subset X_n$ implies $\nu(E) = \int_{X_n} h_n d\mu$.

Now, if $n \leq m$ and $E \subseteq X_n$, then $\int_E h_n d\mu = \int_E h_m d\mu$. Picture

Thus $h_n|_{X_n} = h_m|_{X_n}$ almost everywhere. Let $f_n(x) = \max\{h_1(x), \ldots, h_n(x)\} = h_n(x)$ almost everywhere with respect to μ . Then $f_n \nearrow f : X \to [0, \infty]$. If $E \in \mathcal{M}$ then

$$\nu(E) = \lim_{n \to \infty} \nu(E \cap X_n)$$
$$=$$
$$=$$
$$=$$

Now let $A = \{x \mid f(x) = +\infty\}$. We see $\mu(A \cap X_n) = 0$ (otherwise $\nu(A \cap X_n) = \infty$). Thus $\mu(A) = \lim_{n \to \infty} \mu(A \cap X_n) = 0$ and we can assume $f: X \to [0, \infty)$. This completes our proof. \Box