10/19/18

Lecture 16

Chapter 2.7. - Modes of convergence

Outline Given a measure space (X, \mathcal{M}, μ) and a sequence of measurable functions $(f_n)_n$ the sequence can converge to a function f in different ways. In general these different modes of convergence are not compatible. We will investigate their relationship.

Motivation: Convergence in \mathbb{R}^n

We recall that we can equip \mathbb{R}^n with the different *p*-norms: If $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, then

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/2}$$

If $(x_k)_k \subset \mathbb{R}^n$ is a sequence of vectors in \mathbb{R}^n , such that $x_k = (x_{k1}, x_{k2}, \dots, x_{kn})$ we usually we define

$$\lim_{k \to \infty} x_k = x \Leftrightarrow \lim_{k \to \infty} \|x_k - x\|_2 = 0. \quad (*)$$

This is equivalent to $\lim_{k\to\infty} x_{ki} = x_i$ for all $i \in \{1, 2, \dots, n\}$.

In fact we could take any p-norm in (*) as in this case the convergence is independent of the norm we choose. This is due to the fact that \mathbb{R}^n is a finite dimensional vector space and is no longer true for infinite dimensional vector spaces, like function spaces.

Example 1 A sequence in \mathbb{R}^2 . For all these norms we have:

$$\lim_{k \to \infty} \|x_k - x\| = 0 \stackrel{v_k = x_k - x}{\Leftrightarrow} \lim_{k \to \infty} \|v_k - \overrightarrow{0}\| = 0.$$

Write down the ϵ definition of convergence to (0,0) for a sequence and sketch the convergence of such a sequence with respect to different norms.

10/19/18

Definition 2 (Modes of convergence) Let (X, \mathcal{M}, μ) be a measure space, $(f_n)_n : X \to \mathbb{C}$ be a sequence of measurable functions on X and f be a measurable function on X. We say that

a) $f_n \xrightarrow{\text{pointwise}}_{n \to \infty} f \quad \stackrel{\text{Def.}}{\longleftrightarrow} \quad f_n(x) \xrightarrow[n \to \infty]{} f(x) \text{ for all } x \in X.$ **Picture** Sketch a sequence $(f_n)_n$ that converges to the zero function $f \equiv 0.$

b) $f_n \xrightarrow[n \to \infty]{n \to \infty} f \quad \stackrel{\text{Def.}}{\longleftrightarrow} \quad f_n(x) \xrightarrow[n \to \infty]{n \to \infty} f(x) \text{ for all } x \in N^c \text{ where } \mu(N) = 0.$ **Picture** Sketch a sequence $(f_n)_n$ that converges to the zero function $f \equiv 0.$

c)
$$f_n \xrightarrow[n \to \infty]{\text{uniformly}} f \quad \stackrel{\text{Def.}}{\longleftrightarrow} \quad \forall \epsilon > 0 \ \exists N(\epsilon) \in \mathbb{N}$$
, such that
 $|f_n(x) - f(x)| < \epsilon \text{ for all } x \in X \text{ and for all } n \ge N(\epsilon).$

Picture Sketch a sequence $(f_n)_n$ that converges to the zero function $f \equiv 0$.

d)
$$f_n \xrightarrow[n \to \infty]{L^1} f \quad \stackrel{\text{Def.}}{\longleftrightarrow} \quad ||f_n - f||_1 := \int_X |f_n - f| \, d\mu \xrightarrow[n \to \infty]{Def.} 0.$$

Question Do we always have $f_n \xrightarrow[n \to \infty]{x} f \Leftrightarrow f_n - f \xrightarrow[n \to \infty]{x} 0$?

Question What is the relationship between these different types of convergence? **Answer** It is complicated.

We recall the LDCT which we rephrase in terms of the previous modes of convergence:

Theorem 3 (Lebesque's Dominated Convergence Theorem (LDCT)) Let $(f_n)_{n \in \mathbb{N}} : (X, \mathcal{M}) \to \mathbb{C}$ be a sequence of measurable functions on X such that

a)
$$f_n \xrightarrow[n \to \infty]{a. e.} f.$$

b) $|f_n| \leq g$ almost everywhere for all $n \in \mathbb{N}$, where $g: (X, \mathcal{M}) \to \mathbb{R}_0^+$ and $g \in L^1(\mu)$.

Then $f \in L^1(\mu)$ and $f_n \xrightarrow[n \to \infty]{L^1} f$.

We now show what is not true:

Counter-examples 4

a)
$$f_n \xrightarrow[n \to \infty]{a. e.} f \not\Rightarrow f_n \xrightarrow[n \to \infty]{L^1} f.$$

Sliding door:

b)
$$f_n \xrightarrow{\text{uniformly}} f \neq f_n \xrightarrow{L^1}_{n \to \infty} f$$
.
Ebb tide:

10/19/18

c)
$$f_n \xrightarrow[n \to \infty]{L^1} f \not\Rightarrow f_n \xrightarrow[n \to \infty]{a. e.} f$$

Typewriter sequence: Let $X = [0, 1]$ and set

$$\begin{array}{rcl} f_1 & = & \mathbbm{1}_{[0,1]} \\ f_2 & = & \mathbbm{1}_{[0,\frac{1}{2}]} \ , \ f_3 = \mathbbm{1}_{[\frac{1}{2},1]} \\ f_4 & = & \mathbbm{1}_{[0,\frac{1}{4}]} \ , \ f_5 = \mathbbm{1}_{[\frac{1}{4},\frac{1}{2}]} \ , \ f_6 = \mathbbm{1}_{[\frac{1}{2},\frac{3}{4}]} \ , \ f_7 = \mathbbm{1}_{[\frac{3}{4},1]} \\ & \text{etc.} \end{array}$$

Then

$$\int_{[0,1]} |f_n - 0| \, d\mu =$$

This means that $f_n \xrightarrow[n \to \infty]{L^1} f$, but $(f_n)_n$ does not converge almost everywhere.

Question What does L^1 convergence imply?

If $\mu(A) > 0$ and for all $x \in A$ we have that $|f_n(x) - f(x)| \ge c > 0$, for all $n \in \mathbb{N}$ then

$$\|f_n - f\|_1 =$$

Hence if $f_n \xrightarrow{L^1}{n \to \infty} f$ then

$$\mu(A \mid |f_n(x) - f(x)| \ge c > 0 \text{ for all } x \in A \text{ and } n \in \mathbb{N} \} = 0.$$

10/19/18

Convergence in measure

There is still another important type of convergence.

Definiton 5 Let (X, \mathcal{M}, μ) be a measure space, $(f_n)_n : X \to \mathbb{C}$ be a sequence of measurable functions on X and f be a measurable function on X. We say that $(f_n)_n$ converges in measure to a measurable function $f : X \to \mathbb{C}$ if for all $\epsilon > 0$

$$\lim_{n \to \infty} \mu(x \in X \mid |f_n(x) - f(x)| \ge \epsilon \} = 0.$$

In this case we write shortly $f_n \xrightarrow[n \to \infty]{\mu \to \infty} f$.

Example:

Proposition 6 Let (X, \mathcal{M}, μ) be a measure space, then $f_n \xrightarrow[n \to \infty]{L^1} f$ implies $f_n \xrightarrow[n \to \infty]{\mu} f$. **proof** Note that for $A(\epsilon, n) = \mu(x \in X \mid |f_n(x) - f(x)| \ge \epsilon)$ we have that

$$||f_n - f||_1 =$$

Hence using the two definitions of convergence we obtain:

10/19/18

We can not expect convergence in measure to imply convergence a. e.. However:

Proposition 7 Let (X, \mathcal{M}, μ) be a measure space. If $f_n \xrightarrow[n \to \infty]{\mu} f$ then there is a subsequence $(f_{n_k})_k$ such that $f_{n_k} \xrightarrow[k \to \infty]{a. e.} f$.

proof: HW 3