10/17/18

Lecture 15

Chapter 2.6. - Complex and signed measures

Outline Expanding the definition of a measure, we also allow the measure to have negative values or in \mathbb{C} . The first is called a **signed measure**, the second a **complex measure**. By the Jordan decompositon theorem every signed measure can be decomposed into a positive and a negative measure. We will need this fact later to prove the **Radon-Nikodym theorem**.

Definition 1 (complex measure) Let (X, \mathcal{M}) be a measurable space. A complex measure $\nu : \mathcal{M} \to \mathbb{C}$ is a map, such that

- a) $\nu(\emptyset) = 0.$
- b) If $(A_i)_{i \in \mathbb{N}} \subset \mathcal{M}$ is a countable union of disjoint sets, then

$$u(\biguplus_{i\in\mathbb{N}}A_i) = \sum_{i\in\mathbb{N}}
u(A_i). \quad (\sigma \text{ addititvity})$$

If $\nu : \mathcal{M} \to \mathbb{R}$ then we call ν a signed measure.

Remark 1.) $\nu \neq \pm \infty$ by definition.

2.) The set $\biguplus_{i \in \mathbb{N}} A_i$ is invariant under rearrangement. Therefore so is the sum $\sum_{i \in \mathbb{N}} \nu(A_i)$. By the **Riemann series theorem** it follows that $\sum_{i \in \mathbb{N}} \nu(A_i)$ converges absolutely.

Definition 2 Let (X, \mathcal{M}) be a measurable space and $\nu : \mathcal{M} \to \mathbb{R}$ be a signed measure. A subset $E \in \mathcal{M}$ is called

- a) **positive** if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A) \ge 0$.
- b) **negative** if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A) \leq 0$.
- c) ν null if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A) = 0$.

Remark $\nu(E) = 0$ does not imply that E is ν null.

Picture

Lemma 3 If $(P_i)_{i \in \mathbb{N}} \subset \mathcal{M}$ are positive sets then $\bigcup_{i \in \mathbb{N}} P_i$ is a positive set.

proof Let $P = \bigcup_{i \in \mathbb{N}} P_i$. We can rewrite P as a disjoint union of sets P'_i , where $P'_i \subset P_i$.

Proposition 4 Let $\nu : \mathcal{M} \to \mathbb{R}$ be a signed measure. If $\nu(E) > 0$ then *E* contains a positive set *P* with $\nu(P) > 0$.

proof If E is positive, then we are done. If E is not positive, then E contains a measurable set of negative measure. Let

$$\frac{1}{n_1} = \max\left\{\frac{1}{n} \mid n \in \mathbb{N}, \exists E_1 \in \mathcal{M}, E_1 \subset E \text{ and } \nu(E_1) \leq -\frac{1}{n}\right\}$$

For such a set E_1 where $\nu(E_1) \leq -\frac{1}{n_1}$ we have

$$0 < \nu(E) = \qquad \Rightarrow 0 < \nu(E \setminus E_1).$$

If E_1 positive, we are done, otherwise we proceed inductively and set for all $k \ge 2$:

$$\frac{1}{n_k} = \max\left\{\frac{1}{n} \mid n \in \mathbb{N}, \exists E_k \in \mathcal{M}, E_k \subset E \setminus \biguplus_{i=1}^{k-1} E_i \text{ and } \nu(E_k) \leq -\frac{1}{n}\right\}$$

Picture

We know that

$$\nu(\biguplus_{i=1}^{k-1} E_i) = \sum_{i=1}^{k-1} \nu(E_i) \le -\sum_{i=1}^{k-1} \frac{1}{n_i} < 0.$$

10/17/18

Hence

$$\Rightarrow 0 < \nu(E \setminus \bigcup_{i=1}^{k-1} E_i)$$

Now if for some k we have that $E \setminus \bigcup_{i=1}^{k-1} E_i \subset E$ is positive the above inequality implies that our statement is true and we are done.

If the process does not end, then we set $A = E \setminus \bigcup_{i \in \mathbb{N}} E_i$. Then we have again, as above that $0 < \nu(A)$. On the other hand, as $\biguplus_{i \in \mathbb{N}} E_i \in \mathcal{M}$ and ν only takes finite values

$$-\infty < \nu(\biguplus_{i \in \mathbb{N}} E_i) =$$

That means that

Now fix $\epsilon > 0$. Then there is $\frac{1}{n_{k-1}}$, such that $\frac{1}{n_{k-1}} < \epsilon$ (as $\lim_{k\to\infty} \frac{1}{n_k} = 0$). Furthermore $A \subset E \setminus \bigcup_{i=1}^{k-1} E_i$. By the maximality of $\frac{1}{n_{k-1}}$ we know that A contains no measurable set F with $\nu(F) \leq -\frac{1}{n_{k-1}}$. In other words for all $F \subset A, F \in \mathcal{M}$ we have that

$$\nu(F) > -\frac{1}{n_{k-1}} > -\epsilon.$$

As this is true for all $\epsilon > 0$ this implies that A is positive. Hence again we have found a set that satisfies our conditions. This concludes the proof of **Proposition 4**

Proposition 5 (Hahn decomposition) Let (X, \mathcal{M}) be a measure space and $\nu : \mathcal{M} \to \mathbb{R}$ be a signed measure. Then there is a partition

 $X = P \uplus N$ where P is positive and N is negative.

proof Let \mathcal{P} be the collection of positive sets in X. We set

$$\lambda = \sup\{\nu(P) \mid P \in \mathcal{P}\} \in [0, \infty]$$

Then there is a sequence $(P_i)_{i \in \mathbb{N}} \subset \mathcal{P}$ such that $\lim_{i \to \infty} \nu(P_i) = \lambda$. Take $P = \bigcup_{i \in \mathbb{N}} P_i$. We show that $\nu(P) = \lambda$.

10/17/18

We now show that P is "the **largest**" positive subset. Now set $N = X \setminus P$ and suppose that there is an $E \subset N$, such that E is positive. Then $P \uplus E$ is positive by the lemma and so by the definition of λ

Now if N would contain a subset $E' \in \mathcal{M}$ with positive measure $\nu(E') > 0$, then

This means that N is a negative set and our decomposition follows.

Definition 6 We call $\{P, N\}$ the **Hahn decomposition** of X. It is unique up to null sets.

Definition 7 Let (X, \mathcal{M}) be a measure space. Two positive measures μ_1 and μ_2 are said to be **mutually singular** if there is a partition of X

$$X = X_1 \uplus X_2$$
 such that $\mu_1(X_2) = \mu_2(X_1) = 0.$

In this case we write shortly $\mu_1 \perp \mu_2$.

Theorem 8 (Jordan decomposition) Let (X, \mathcal{M}) be a measure space and $\nu : \mathcal{M} \to \mathbb{R}$ be a signed measure. Then there is a unique (up to sets of measure zero) pair (ν^+, ν^-) of mutually singular positive measures, such that $\nu = \nu^+ - \nu^-$.

proof Let $\{P, N\}$ be the Hahn decomposition of X, i.e.

 $X = P \uplus N$ where P is positive and N is negative.

We set for all $E \in \mathcal{M}$:

 $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$

The rest is an exercise.