Math 103: Measure Theory and Complex Analysis
 Fall 2018

10/17/18

Lecture 15

Chapter 2.6. - Complex and signed measures

Outline Expanding the definition of a measure, we also allow the measure to have negative values or in \mathbb{C}. The first is called a signed measure, the second a complex measure. By the Jordan decompositon theorem every signed measure can be decomposed into a positive and a negative measure. We will need this fact later to prove the Radon-Nikodym theorem.

Definition 1 (complex measure) Let (X, \mathcal{M}) be a measurable space. A complex measure $\nu: \mathcal{M} \rightarrow \mathbb{C}$ is a map, such that
a) $\nu(\emptyset)=0$.
b) If $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{M}$ is a countable union of disjoint sets, then

$$
\nu\left(\biguplus_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} \nu\left(A_{i}\right) . \quad(\sigma \text { addititvity })
$$

If $\nu: \mathcal{M} \rightarrow \mathbb{R}$ then we call ν a signed measure.
Remark 1.) $\nu \neq \pm \infty$ by defintion.
2.) The set $\biguplus_{i \in \mathbb{N}} A_{i}$ is invariant under rearrangement. Therefore so is the sum $\sum_{i \in \mathbb{N}} \nu\left(A_{i}\right)$. By the Riemann series theorem it follows that $\sum_{i \in \mathbb{N}} \nu\left(A_{i}\right)$ converges absolutely.

Definition 2 Let (X, \mathcal{M}) be a measurable space and $\nu: \mathcal{M} \rightarrow \mathbb{R}$ be a a signed measure. A subset $E \in \mathcal{M}$ is called
a) positive if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A) \geq 0$.
b) negative if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A) \leq 0$.
c) ν null if for all $A \in \mathcal{M}$ we have $A \subset E \Rightarrow \nu(A)=0$.

Remark $\nu(E)=0$ does not imply that E is ν null.

Picture

Math 103: Measure Theory and Complex Analysis Fall 2018

Lemma 3 If $\left(P_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{M}$ are positive sets then $\bigcup_{i \in \mathbb{N}} P_{i}$ is a positive set.
proof Let $P=\bigcup_{i \in \mathbb{N}} P_{i}$. We can rewrite P as a disjoint union of sets P_{i}^{\prime}, where $P_{i}^{\prime} \subset P_{i}$.

Proposition 4 Let $\nu: \mathcal{M} \rightarrow \mathbb{R}$ be a signed measure. If $\nu(E)>0$ then E contains a positive set P with $\nu(P)>0$.
proof If E is positive, then we are done. If E is not positive, then E contains a measurable set of negative measure. Let

$$
\frac{1}{n_{1}}=\max \left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}, \exists E_{1} \in \mathcal{M}, E_{1} \subset E \text { and } \nu\left(E_{1}\right) \leq-\frac{1}{n}\right\}
$$

For such a set E_{1} where $\nu\left(E_{1}\right) \leq-\frac{1}{n_{1}}$ we have

$$
0<\nu(E)=\quad \Rightarrow 0<\nu\left(E \backslash E_{1}\right)
$$

If E_{1} positive, we are done, otherwise we procced inductively and set for all $k \geq 2$:

$$
\frac{1}{n_{k}}=\max \left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}, \exists E_{k} \in \mathcal{M}, E_{k} \subset E \backslash \biguplus_{i=1}^{k-1} E_{i} \text { and } \nu\left(E_{k}\right) \leq-\frac{1}{n}\right\}
$$

Picture

We know that

$$
\nu\left(\biguplus_{i=1}^{k-1} E_{i}\right)=\sum_{i=1}^{k-1} \nu\left(E_{i}\right) \leq-\sum_{i=1}^{k-1} \frac{1}{n_{i}}<0
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Hence

$$
\Rightarrow 0<\nu\left(E \backslash \biguplus_{i=1}^{k-1} E_{i}\right)
$$

Now if for some k we have that $E \backslash \biguplus_{i=1}^{k-1} E_{i} \subset E$ is positive the above inequality implies that our statement is true and we are done.
If the process does not end, then we set $A=E \backslash \biguplus_{i \in \mathbb{N}} E_{i}$. Then we have again, as above that $0<\nu(A)$. On the other hand, as $\biguplus_{i \in \mathbb{N}} E_{i} \in \mathcal{M}$ and ν only takes finite values

$$
-\infty<\nu\left(\biguplus_{i \in \mathbb{N}} E_{i}\right)=
$$

That means that

Now fix $\epsilon>0$. Then there is $\frac{1}{n_{k-1}}$, such that $\frac{1}{n_{k-1}}<\epsilon\left(\right.$ as $\left.\lim _{k \rightarrow \infty} \frac{1}{n_{k}}=0\right)$. Furthermore $A \subset E \backslash \biguplus_{i=1}^{k-1} E_{i}$. By the maximality of $\frac{1}{n_{k-1}}$ we know that A contains no measurable set F with $\nu(F) \leq-\frac{1}{n_{k-1}}$. In other words for all $F \subset A, F \in \mathcal{M}$ we have that

$$
\nu(F)>-\frac{1}{n_{k-1}}>-\epsilon .
$$

As this is true for all $\epsilon>0$ this implies that A is positive. Hence again we have found a set that satisfies our condtions. This concludes the proof of Proposition 4

Proposition 5 (Hahn decomposition) Let (X, \mathcal{M}) be a measure space and $\nu: \mathcal{M} \rightarrow \mathbb{R}$ be a signed measure. Then there is a partition

$$
X=P \uplus N \text { where } P \text { is positive and } N \text { is negative. }
$$

proof Let \mathcal{P} be the collection of positive sets in X. We set

$$
\lambda=\sup \{\nu(P) \mid P \in \mathcal{P}\} \in[0, \infty]
$$

Then there is a sequence $\left(P_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{P}$ such that $\lim _{i \rightarrow \infty} \nu\left(P_{i}\right)=\lambda$. Take $P=\bigcup_{i \in \mathbb{N}} P_{i}$. We show that $\nu(P)=\lambda$.

Math 103: Measure Theory and Complex Analysis Fall 2018

We now show that P is "the largest" positive subset.
Now set $N=X \backslash P$ and suppose that there is an $E \subset N$, such that E is positive. Then $P \uplus E$ is positive by the lemma and so by the definition of λ

Now if N would contain a subset $E^{\prime} \in \mathcal{M}$ with positive measure $\nu\left(E^{\prime}\right)>0$, then

This means that N is a negative set and our decomposition follows.
Definition 6 We call $\{P, N\}$ the Hahn decomposition of X. It is unique up to null sets.
Definition 7 Let (X, \mathcal{M}) be a measure space. Two positive measures μ_{1} and μ_{2} are said to be mutually singular if there is a partition of X

$$
X=X_{1} \uplus X_{2} \text { such that } \mu_{1}\left(X_{2}\right)=\mu_{2}\left(X_{1}\right)=0 \text {. }
$$

In this case we write shortly $\mu_{1} \perp \mu_{2}$.
Theorem 8 (Jordan decomposition) Let (X, \mathcal{M}) be a measure space and $\nu: \mathcal{M} \rightarrow \mathbb{R}$ be a signed measure. Then there is a unique (up to sets of measure zero) pair (ν^{+}, ν^{-}) of mutually singular positive measures, such that $\nu=\nu^{+}-\nu^{-}$.
proof Let $\{P, N\}$ be the Hahn decomposition of X, i.e.

$$
X=P \uplus N \text { where } P \text { is positive and } N \text { is negative. }
$$

We set for all $E \in \mathcal{M}$:

$$
\nu^{+}(E)=\nu(E \cap P) \text { and } \nu^{-}(E)=-\nu(E \cap N)
$$

The rest is an exercise.

