10/15/18

Lecture 14

Chapter 2.5 - L^1 spaces

Outline A normed vector space which is complete is called a Banach space. $\mathcal{L}^{1}(\mu)$ is a vector space, but in general not complete. We can complete $\mathcal{L}^{1}(\mu)$ to $L^{1}(\mu)$ by taking equivalence classes of functions where two functions are equivalent if they coincide almost everywhere.

We recall the definition of a norm on a vector space. In the following we assume that \mathbb{F} is a field where $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$.

Definition 1 (Norm) Let V be a vector space over a field \mathbb{F} where $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$. A norm is a map

 $\|\cdot\|: V \to [0, +\infty)$ such that for all $v, w \in V$

- a) $||v|| = 0 \Leftrightarrow v = 0.$
- b) $\|\lambda \cdot v\| = |\lambda| \cdot \|v\|$ for all $\lambda \in \mathbb{F}$.
- c) $||v + w|| \le ||v|| + ||w|| \quad (\Delta \ne).$

Every norm $\|\cdot\|$ induced a metric $d: V \times V \to [0,\infty), (u,v) \mapsto d(u,v) := \|u-v\|$.

Example 2 (*p* - norms) For $V = \mathbb{C}^n$ or $V = \mathbb{R}^n$ we have for $v = (v_1, v_2, \dots, v_n) \in V$:

- 1.) $\|v\|_1 = \sum_{i=1}^n |v_i|$ (1 norm)
- 2.) $||v||_2 = \left(\sum_{i=1}^n |v_i|^2\right)^{\frac{1}{2}}$ (2 norm or Euclidean norm)
- 3.) $||v||_p = (\sum_{i=1}^n |v_i|^p)^{\frac{1}{p}}$ for $p \in [1, +\infty)$ (**p** norm)
- 4.) $||v||_{\infty} = \max_{i \in \{1,...,n\}} |v_i| (\infty norm)$

Picture Sketch the unit circles in \mathbb{R}^2 with respect to 1.), 2.) and 4.):

10/15/18

Given a measure space (X, \mathcal{M}, μ) we would like to define a norm on $\mathcal{L}^1(\mu)$ by

$$\|f\|_1 = \int_X |f| \, d\mu$$

Problem Condition a) of the norm is not satisfied. **Solution** We make a vector space out of classes of functions:

Definition 3 (L^1 space) Let (X, \mathcal{M}, μ) be a measure space. We set

$$L^1(\mu) := \mathcal{L}^1(\mu) / \sim$$
 where $f \sim g \Leftrightarrow f = g$ almost everywhere.

Theorem 4 Let (X, \mathcal{M}, μ) be a measure space. Then $(L^1(\mu), \|\cdot\|)$ with the norm

$$||f||_1 = \int_X |f| d\mu$$
 is a normed vector space.

proof 1.) $L^{1}(\mu)$ is a vector space

We have seen that $\mathcal{L}^{1}(\mu)$ is a vector space. We can show that

$$W := \{ f \in \mathcal{L}^{1}(\mu) \mid \int_{X} |f| \, d\mu = 0 \}$$

is a subspace. Then it follows from Linear Algebra that the quotient space $L^1(\mu) := \mathcal{L}^1(\mu)/W$ is again a vector space. We check the subspace criteria:

2.) $\|\cdot\|$ is a norm on $L^1(\mu)$

To show that $\|\cdot\|$ is a norm on $L^1(\mu)$ we remark that $L^1(\mu)$ inherits condition b) and c) of the norm from $\mathcal{L}^1(\mu)$. We recall that c) follows from Minkowski's inequality. So it remains to show that $L^1(\mu) := \mathcal{L}^1(\mu)/W = \mathcal{L}^1(\mu)/\sim$ to complete part a): Suppose that $\int_X |f| d\mu = 0$. We have to show that f = 0 almost everywhere. Let

$$E = \{x \in X \mid |f(x)| > 0\}$$

We have to show that $\mu(E) = 0$.

We prove the statement by contradiction: Let $E_n = \{x \in X \mid |f(x)| > \frac{1}{n}\}$, then $E = \bigcup_{n \in \mathbb{N}} E_n$. Hence if $\mu(E) > 0$ then

Note Though $L^{1}(\mu)$ is not a space of functions, we will often pretend that it is.

Remark We recall that a metric space is **complete** if every Cauchy sequence converges in the space. We have:

Definition 6 (Banach space) A normed vector space $(V, \|\cdot\|)$ that is complete is called a **Banach space**.

We want to prove that $(L^1(\mu), \|\cdot\|_1)$ is a Banach space. To this end we prove the following lemma:

Lemma 7 A normed vector space $(V, \|\cdot\|)$ is complete if and only if every absolute convergent series in V is convergent in V.

proof " \Rightarrow " We know that every Cauchy sequence is complete. For $(v_k)_{k\in\mathbb{N}}$ let $\sum_{k\in\mathbb{N}} v_k$ be an absolutely convergent series i.e. $\sum_{k\in\mathbb{N}} ||v_k|| = S < \infty$. Let $S_n := \sum_{k=1}^n ||v_k||$ As $(S_n)_n \subset \mathbb{R}$ is converging to S this implies that $(S_n)_n$ is a Cauchy sequence. Hence

By the $\Delta \neq$ this implies that

Hence the series $(s_n)_n$ where $s_n := \sum_{k=1}^n v_k$ is a Cauchy sequence and $\lim_{n\to\infty} s_n = s \in V$ as $(V, \|\cdot\|)$ is complete. Hence the series converges in V.

" \Leftarrow " Now assume that absolute convergence implies convergence of a series and let $(v_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in V. As it is a Cauchy sequence we can extract a subsequence $(v_{n_k})_{k \in \mathbb{N}}$, such that

$$||v_{n_{k+1}} - v_{n_k}|| < \frac{1}{2^k}.$$
 (*)

We now turn the sequence $(v_{n_k})_{k \in \mathbb{N}}$ into a telescoping sum. To this end we set

10/15/18

Then by (*) we know that $\sum_{k\geq 1} ||a_k||$ converges, hence by our assumption $\sum_{k\geq 1} a_k$ converges to $v \in V$. This is equal to that the subsequence $(v_{n_k})_k$ converges to v. Then by the $\Delta \neq$ this implies that $(v_n)_{n\in\mathbb{N}}$ converges to $v \in V$.

In total we have shown the lemma.

Theorem 8 Let (X, \mathcal{M}, μ) be a measure space then $(L^1(\mu), \|\cdot\|_1)$ is a Banach space.

proof We use the lemma. Let $(f_n)_{n \in \mathbb{N}} \subset \mathcal{L}^1(\mu)$ be a sequence of functions, such that $\sum_{n \in \mathbb{N}} ||f_n||_1 = S \in \mathbb{R}$. We have to show that $\sum_{n \in \mathbb{N}} f_n$ is convergent in $L^1(\mu)$. Let g be the function given by

$$g(x) := \sum_{n \in \mathbb{N}} |f_n(x)| \in [0, +\infty].$$

Then

$$\int_X g \, d\mu =$$

This implies that the set

$$N := \{ x \in X \mid g(x) = +\infty \}$$

has measure zero and $\sum_{n \in \mathbb{N}} f_n(x)$ is absolutely convergent for all $x \in X \setminus N$. Let s(x) be the function defined by

$$s(x) = \begin{cases} \sum_{n \in \mathbb{N}} f_n(x) & \text{if } x \notin N \\ 0 & x \in N \end{cases}$$

For the function defined by $s_n = \sum_{i=1}^n \mathbb{1}_{X \setminus N} f_i$ we know that

$$|s_n(x)| \le$$
 and $\lim_{n \to \infty} s_n(x) =$

By the DCT we know that

This means that $\sum_{n \in \mathbb{N}} f_n = s$ almost everywhere.