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Lecture 13

Theorem 4 (Monotone Class Lemma (MCL)) If A ⊂ P(X) is an algebra then

M(A) = 〈A〉 = C(A).

proof As every σ algebra containing A is a monotone class containing A we know that
C(A) ⊂M(A). It remains to show the inverse direction.

We start by constructing a monotone class for each E ∈ C = C(A) : for E ∈ C set

C(E) := {F ∈ C | E\F ∈ C , F\E ∈ C and F ∩ E ∈ C}.

Picture

We observe

1.) As ∅ ∈ A ⊂ C = C(A) we have that ∅ ∈ C and E ∈ C.

2.) By de�nition: F ∈ C(E)⇔

3.) C(E) is a monotone class as C is a monotone class (check it).

Since A is an algebra, we know that for all E ∈ A : A ⊂ C(E): for A,E ∈ A we know that

A ∩ E = E\A = A\E =

With 3.) this implies that for all E ∈ A

4.) C ∈ C(E) or F ∈ C(E) for all F ∈ C.

By 2.) this implies that E ∈ C(F ) for all E ∈ A and F ∈ C. Hence

This means that if E,F ∈ C then

E\F ∈ C , F\E ∈ C and F ∩ E ∈ C .

Since X, ∅ ∈ A ⊂ C we see that C is an algebra (check the conditions).
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It remains to show that C is also a σ algebra. Then it is a σ algebra containing A and hence
M(A) ⊂ C. To show the missing closure under countable unions we observe: if (Ei)i∈N ⊂ C,
then as C is an algebra

i⋃
k=1

Ek ∈ C ⇒
⋃
i∈N

Ei =

as C is a monotone class. In total we have shown our lemma. �

Aim: Using the MCL we can now study the measurability of slice functions in more detail.

Proposition 5 Suppose (X,M, µ) and (Y,N , ν) are σ �nite measure spaces. If E ∈ M⊗N
then the maps

x→ ν(Ex) and y → µ(Ey) are measurable and (1)

µ× ν(E) =

∫
X
ν(Ex) dµ =

∫
Y
µ(Ey) dν. (2)

proof Suppose �rst that µ < ∞ and ν < ∞. Let C be the collection of sets for which the
conclusions of the proposition hold:

C = {E ∈M⊗N | E satis�es (1), (2)}.

We know that

• R ⊂ C: if A×B = R is a rectangle then clearly

ν((A×B)x) = and

∫
X
ν((A×B)x) dµ =

As the same reasoning applies to the other integral, we have that any rectangle R is in C.

• A ⊂ C: every element in A can be written as a disjoint union of elements in R. This
implies that A ⊂ C.

As the algebra A ⊂ C it therefore su�ces to show that C is a monotone class.

Then 〈A〉 =M⊗N = C(A) ⊂ C . This will follow from the MCT.

So let (Ei)i∈N ⊂ C with Ei ⊂ Ei+1 and E =
⋃

i∈NEi. Let

fn(y) = µ((En)y) and f(y) = µ(Ey) .



Math 103: Measure Theory and Complex Analysis

Fall 2018

10/12/18

Then fn ≥ 0 is measurable and the sequence (fn)n is an increasing sequence of positive
functions, such that limn→∞ fn = f . Hence we can apply the MCT and obtain∫

Y
µ(Ey) dν =

Similarly
∫
X ν(Ex) dµ = µ× ν(E), so E ∈ C.

To prove the statement for countable sections of sets on C we proceed in a similar fashion and
construct a decreasing sequence of functions. We can then argue with the DCT.
In total we have proven that if µ < ∞ and ν < ∞ then C is a monotone class, which was the
missing piece of our proof.

In general, if µ or ν are not �nite, we use the fact that X × Y =
⋃
i∈N

Ai ×Bi, where

Ai ×Bi ∈ R , Ai ×Bi ⊂ Ai+1 ×Bi+1 for all i ∈ N and µ× ν(Ai ×Bi) <∞.

For E ∈M⊗N we can then write

µ× ν(Ai ×Bi) =

The statement then follows again with the MCT. �

Notation Given a measure space (X,M, µ) we set

L+(X,M, µ) = L+(µ) = {f : X → [0,∞] | f measurable }

L1(X,M, µ) = L1(µ) = {f : X → C |
∫
X
|f | dµ <∞}

Finally we have

Theorem 6 (Fubini-Tonelli) Suppose (X,M, µ) and (Y,N , ν) are σ �nite measure spaces.
Then

a) (Tonelli) Suppose f ∈ L+(µ× ν) then

i) fx ∈ L+(µ) and fy ∈ L+(ν) for all x ∈ X and y ∈ Y .
ii) If g(x) =

∫
Y fx dν and h(y) =

∫
X fy dµ. Then g ∈ L+(µ) and h ∈ L+(ν).

iii)

∫
X×Y

f dµ× ν =

∫
X

(∫
Y
f(x, y) dµ

)
dν =

∫
Y

(∫
X
f(x, y) dν

)
dµ.
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b) (Fubini) Suppose f ∈ L1(µ× ν) then

i) fx and fy are measurable for all x ∈ X and y ∈ Y .
ii) For µ almost all x ∈ X, fx ∈ L1(ν) and for µ almost all y ∈ Y , fy ∈ L1(µ). If

g(x) =

{ ∫
Y fx dν
0

if
fx ∈ L1(ν)
fx 6∈ L1(ν)

and h(y) =

{ ∫
X fy dµ
0

if
fy ∈ L1(µ)
fy 6∈ L1(µ)

.

Then g ∈ L1(µ) and h ∈ L1(ν).

iii)

∫
X×Y

f dµ× ν =

∫
X

(∫
Y
f(x, y) dµ

)
dν =

∫
Y

(∫
X
f(x, y) dν

)
dµ.

proof Tonelli i) If f is characteristic function then the result follows from the previous propo-
sition.

ii) If gn(x) =
∫
Y (fn)x dν and hn(x) =

∫
X(fn)y dµ then by the monotonicity of the integral we

can approximate g and f by the increasing sequences (gn)n and (hn)n of measurable functions,
such that limn→∞ gn = g and limn→∞ hn = h. Then g ∈ L+(ν) and h ∈ L+(µ) and ii) holds.
iii) By the MCT ∫

X
g dµ =

By symmetry

∫
Y
h dν =

∫
X×Y

f d(µ× ν) which concludes the proof of a) �

Fubini If f ∈ L1(µ × ν), we can apply Tonelli to Re(f)± and Im(f)±. So we may assume
that f ∈ L1(µ × ν) ∩ L+(µ × ν). Then fx and fy are measurable, as is g̃(x) =

∫
Y fx dν and∫

X g̃ dµ <∞.
Thus for N = {x : g̃(x) =∞} is a µ-null set so g is µ measurable and g̃ = g almost everywhere.
In particular g ∈ L1(µ) and ∫

X
g dµ =

∫
X×Y

f d(µ× ν).

The rest follows by symmetry. �
Remark In practice Fubini is usually used to reverse the order of integration to obtain simpler
integrals in a formula like ∫

X

∫
Y
f(x, y) dν dµ

First we show that f isM⊗N measurable. Then we apply Tonelli's theorem to
∫
X

∫
Y |f(x, y)| dν dµ

to see that f ∈ L1(µ× ν). Then Fubini's theorem applies.


