10/12/18

Lecture 13

Theorem 4 (Monotone Class Lemma (MCL)) If $\mathcal{A} \subset \mathcal{P}(X)$ is an algebra then

$$\mathcal{M}(\mathcal{A}) = \langle \mathcal{A} \rangle = \mathcal{C}(\mathcal{A}).$$

proof As every σ algebra containing \mathcal{A} is a monotone class containing \mathcal{A} we know that $\mathcal{C}(\mathcal{A}) \subset \mathcal{M}(\mathcal{A})$. It remains to show the inverse direction. We start by constructing a monotone class for each $E \in \mathcal{C} = \mathcal{C}(\mathcal{A})$: for $E \in \mathcal{C}$ set

$$\mathcal{C}(E) := \{ F \in \mathcal{C} \mid E \setminus F \in \mathcal{C}, \ F \setminus E \in \mathcal{C} \text{ and } F \cap E \in \mathcal{C} \}.$$

Picture

We observe

- 1.) As $\emptyset \in \mathcal{A} \subset \mathcal{C} = \mathcal{C}(\mathcal{A})$ we have that $\emptyset \in \mathcal{C}$ and $E \in \mathcal{C}$.
- 2.) By definition: $F \in \mathcal{C}(E) \Leftrightarrow$
- 3.) $\mathcal{C}(E)$ is a monotone class as \mathcal{C} is a monotone class (check it).

Since \mathcal{A} is an algebra, we know that for all $E \in \mathcal{A}$: $\mathcal{A} \subset \mathcal{C}(E)$: for $A, E \in \mathcal{A}$ we know that

 $A \cap E = E \setminus A = A \setminus E =$

With 3.) this implies that for all $|E \in \mathcal{A}|$

- 4.) $\mathcal{C} \in \mathcal{C}(E)$ or $F \in \mathcal{C}(E)$ for all $F \in \mathcal{C}$.
- By 2.) this implies that $E \in \mathcal{C}(F)$ for all $E \in \mathcal{A}$ and $F \in \mathcal{C}$. Hence

This means that if $E, F \in \mathcal{C}$ then

$$E \backslash F \in \mathcal{C} , \ F \backslash E \in \mathcal{C} \ \text{and} \ F \cap E \in \mathcal{C} \ .$$

Since $X, \emptyset \in \mathcal{A} \subset \mathcal{C}$ we see that \mathcal{C} is an algebra (check the conditions).

10/12/18

It remains to show that \mathcal{C} is also a σ algebra. Then it is a σ algebra containing \mathcal{A} and hence $\mathcal{M}(\mathcal{A}) \subset \mathcal{C}$. To show the missing closure under countable unions we observe: if $(E_i)_{i \in \mathbb{N}} \subset \mathcal{C}$, then as \mathcal{C} is an algebra

$$\bigcup_{k=1}^{i} E_k \in \mathcal{C} \implies \bigcup_{i \in \mathbb{N}} E_i =$$

as \mathcal{C} is a monotone class. In total we have shown our lemma.

Aim: Using the MCL we can now study the measurability of slice functions in more detail.

Proposition 5 Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ finite measure spaces. If $E \in \mathcal{M} \otimes \mathcal{N}$ then the maps

$$x \to \nu(E_x)$$
 and $y \to \mu(E_y)$ are measurable and (1)

$$\mu \times \nu(E) = \int_X \nu(E_x) \, d\mu = \int_Y \mu(E_y) \, d\nu. \tag{2}$$

proof Suppose first that $\mu < \infty$ and $\nu < \infty$. Let C be the collection of sets for which the conclusions of the proposition hold:

$$\mathcal{C} = \{ E \in \mathcal{M} \otimes \mathcal{N} \mid E \text{ satisfies } (1), (2) \}.$$

We know that

• $\mathcal{R} \subset \mathcal{C}$: if $A \times B = R$ is a rectangle then clearly

$$u((A \times B)_x) =$$
 and $\int_X \nu((A \times B)_x) d\mu =$

As the same reasoning applies to the other integral, we have that any rectangle R is in C.

• $\mathcal{A} \subset \mathcal{C}$: every element in \mathcal{A} can be written as a disjoint union of elements in \mathcal{R} . This implies that $\mathcal{A} \subset \mathcal{C}$.

As the algebra $\mathcal{A} \subset \mathcal{C}$ it therefore suffices to show that \mathcal{C} is a monotone class. Then $\overline{\langle \mathcal{A} \rangle} = \mathcal{M} \otimes \mathcal{N} = \mathcal{C}(\mathcal{A}) \subset \mathcal{C}$. This will follow from the MCT. So let $(E_i)_{i \in \mathbb{N}} \subset \mathcal{C}$ with $E_i \subset E_{i+1}$ and $E = \bigcup_{i \in \mathbb{N}} E_i$. Let

$$f_n(y) = \mu((E_n)_y)$$
 and $f(y) = \mu(E_y)$

10/12/18

Then $f_n \ge 0$ is measurable and the sequence $(f_n)_n$ is an increasing sequence of positive functions, such that $\lim_{n\to\infty} f_n = f$. Hence we can apply the MCT and obtain

$$\int_Y \mu(E_y) \, d\nu =$$

Similarly $\int_X \nu(E_x) d\mu = \mu \times \nu(E)$, so $E \in \mathcal{C}$.

To prove the statement for countable sections of sets on C we proceed in a similar fashion and construct a decreasing sequence of functions. We can then argue with the DCT. In total we have proven that if $\mu < \infty$ and $\nu < \infty$ then C is a monotone class, which was the

In total we have proven that if $\mu < \infty$ and $\nu < \infty$ then C is a monotone class, which was the missing piece of our proof.

In general, if μ or ν are not finite, we use the fact that $X \times Y = \bigcup_{i \in \mathbb{N}} A_i \times B_i$, where

 $A_i \times B_i \in \mathcal{R}$, $A_i \times B_i \subset A_{i+1} \times B_{i+1}$ for all $i \in \mathbb{N}$ and $\mu \times \nu(A_i \times B_i) < \infty$.

For $E \in \mathcal{M} \otimes \mathcal{N}$ we can then write

$$\mu \times \nu(A_i \times B_i) =$$

The statement then follows again with the MCT.

Notation Given a measure space (X, \mathcal{M}, μ) we set

$$L^{+}(X, \mathcal{M}, \mu) = L^{+}(\mu) = \{f : X \to [0, \infty] \mid f \text{ measurable } \}$$
$$\mathcal{L}^{1}(X, \mathcal{M}, \mu) = \mathcal{L}^{1}(\mu) = \{f : X \to \mathbb{C} \mid \int_{X} |f| \, d\mu < \infty \}$$

Finally we have

Theorem 6 (Fubini-Tonelli) Suppose (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) are σ finite measure spaces. Then

a) (Tonelli) Suppose $f \in L^+(\mu \times \nu)$ then

i)
$$f_x \in L^+(\mu)$$
 and $f_y \in L^+(\nu)$ for all $x \in X$ and $y \in Y$.
ii) If $g(x) = \int_Y f_x d\nu$ and $h(y) = \int_X f_y d\mu$. Then $g \in L^+(\mu)$ and $h \in L^+(\nu)$.
iii) $\int_{X \times Y} f d\mu \times \nu = \int_X \left(\int_Y f(x, y) d\mu \right) d\nu = \int_Y \left(\int_X f(x, y) d\nu \right) d\mu$.

10/12/18

b) (Fubini) Suppose $f \in \mathcal{L}^1(\mu \times \nu)$ then

- i) f_x and f_y are measurable for all $x \in X$ and $y \in Y$.
- ii) For μ almost all $x \in X$, $f_x \in \mathcal{L}^1(\nu)$ and for μ almost all $y \in Y$, $f_y \in \mathcal{L}^1(\mu)$. If

$$g(x) = \begin{cases} \int_Y f_x \, d\nu & \text{if } \quad f_x \in \mathcal{L}^1(\nu) \\ f_x \notin \mathcal{L}^1(\nu) & \text{and } h(y) = \begin{cases} \int_X f_y \, d\mu & \text{if } \quad f_y \in \mathcal{L}^1(\mu) \\ 0 & \text{if } \quad f_y \notin \mathcal{L}^1(\mu) \end{cases}.$$

Then $g \in \mathcal{L}^1(\mu)$ and $h \in \mathcal{L}^1(\nu)$.
iii) $\int_{X \times Y} f \, d\mu \times \nu = \int_X \left(\int_Y f(x, y) \, d\mu \right) \, d\nu = \int_Y \left(\int_X f(x, y) \, d\nu \right) \, d\mu.$

proof Tonelli i) If f is characteristic function then the result follows from the previous proposition.

ii) If $g_n(x) = \int_Y (f_n)_x d\nu$ and $h_n(x) = \int_X (f_n)_y d\mu$ then by the monotonicity of the integral we can approximate g and f by the increasing sequences $(g_n)_n$ and $(h_n)_n$ of measurable functions, such that $\lim_{n\to\infty} g_n = g$ and $\lim_{n\to\infty} h_n = h$. Then $g \in L^+(\nu)$ and $h \in L^+(\mu)$ and ii) holds. iii) By the MCT

$$\int_X g\,d\mu =$$

By symmetry $\int_Y h \, d\nu = \int_{X \times Y} f \, d(\mu \times \nu)$ which concludes the proof of a)

Fubini If $f \in \mathcal{L}^1(\mu \times \nu)$, we can apply Tonelli to $\operatorname{Re}(f)^{\pm}$ and $\operatorname{Im}(f)^{\pm}$. So we may assume that $f \in \mathcal{L}^1(\mu \times \nu) \cap L^+(\mu \times \nu)$. Then f_x and f_y are measurable, as is $\tilde{g}(x) = \int_Y f_x d\nu$ and $\int_X \tilde{g} d\mu < \infty$.

Thus for $N = \{x : \tilde{g}(x) = \infty\}$ is a μ -null set so g is μ measurable and $\tilde{g} = g$ almost everywhere. In particular $g \in \mathcal{L}^1(\mu)$ and

$$\int_X g \, d\mu = \int_{X \times Y} f \, d(\mu \times \nu)$$

The rest follows by symmetry.

Remark In practice Fubini is usually used to reverse the order of integration to obtain simpler integrals in a formula like

$$\int_X \int_Y f(x,y) \, d\nu \, d\mu$$

First we show that f is $\mathcal{M} \otimes \mathcal{N}$ measurable. Then we apply Tonelli's theorem to $\int_X \int_Y |f(x,y)| d\nu d\mu$ to see that $f \in \mathcal{L}^1(\mu \times \nu)$. Then Fubini's theorem applies.