Math 103: Measure Theory and Complex Analysis Fall 2018

Lecture 12

We proceed by constructing a premeasure on \mathcal{A}. To this end we first prove the following lemma.

Lemma 3 If $A, B \in \mathcal{R}$ and $A \times B=\biguplus_{i \in \mathbb{N}} A_{i} \times B_{i}$ where $A_{i} \times B_{i} \in \mathcal{R}$ then

$$
\mu(A) \cdot \nu(B)=\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right) \cdot \nu\left(B_{i}\right) .
$$

Picture

proof If $(x, y) \in X \times Y$ then

$$
\mathbb{1}_{A}(x) \cdot \mathbb{1}_{B}(y)=
$$

Now holding y fixed and integrating with respect to x we obtain

Then integrating with respect to y we obtain our statement.
We now show that there is a unique premeasure π on \mathcal{A} that satisfies the formula of the lemma.
Lemma 4 There is a unique premeasure $\pi: \mathcal{A} \rightarrow[0, \infty]$ such that

$$
\pi(A \times B)=\mu(A) \cdot \nu(B) \text { for all } A \times B \in \mathcal{R}
$$

proof Clearly $\pi(\emptyset \times \emptyset)=0$. It remains to show that π is well-defined and satisfies the second condition of a premeasure.
1.) π is well-defined

If $\left(A_{i} \times B_{i}\right)_{i=1}^{n} \subset \mathcal{R}$ and $\left(C_{j} \times D_{j}\right)_{j=1}^{m} \subset \mathcal{R}$ are families of mutually disjoint sets in \mathcal{R}, such that

$$
\biguplus_{i=1}^{n} A_{i} \times B_{i}=A \times B=\biguplus_{j=1}^{m} C_{j} \times D_{j} .
$$

Idea: Look at the refinement. Then
$A_{i} \times B_{i}=$
and $C_{j} \times D_{j}=$

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Using the previous lemma twice we have that

$$
\sum_{i=1}^{n} \mu\left(A_{i}\right) \cdot \nu\left(B_{i}\right)=
$$

So the value of $\pi(A \times B)$ is independent of the partition of $A \times B$ into disjoint sets. This means that π is well-defined.
2.) π satisfies the second condition of a premeasure

We have to show: if $\left(R_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{A}$ and $R=\biguplus_{i \in \mathbb{N}} R_{i} \in \mathcal{A}$ then $\pi(R)=\sum_{i \in \mathbb{N}} \pi\left(R_{i}\right)$.
Suppose that $R_{i}=A_{i} \times B_{i} \in \mathcal{A}$ and by the definition of \mathcal{A}, we have that

$$
\biguplus_{i \in \mathbb{N}} A_{i} \times B_{i}=R=\biguplus_{j=1}^{m} C_{j} \times D_{j} \text { where } C_{j} \times D_{j} \in \mathcal{R} .
$$

Note that it follows from the proof of Lemma 2 that we may take a disjoint union of rectangles $C_{j} \times D_{j} \in \mathcal{R}$. Then like in the previous part we have
$\pi(R)=\sum_{j=1}^{m} \mu\left(C_{j}\right) \cdot \nu\left(D_{j}\right)=$
In total we have that π is a premeasure.
Definition 5 (product measure) The measure on $\mathcal{M} \otimes \mathcal{N}=\langle\mathcal{R}\rangle$ generated by π is called the product of μ and ν and is denoted by $\mu \times \nu$.

Remark 6 If μ and ν are σ finite, then so is π. In this case $\mu \times \nu$ is the unique measure on $\mathcal{M} \otimes \mathcal{N}$ such that

$$
\mu \times \nu(A \times B)=\mu(A) \cdot \nu(B) \text { for all } A \times B \in \mathcal{R}
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Chapter 2.4. - Fubini-Tonelli Theorem

Outline Under certain simple conditions we can exchange the order of integration in the double integral. This is stated in the theorem of Fubini-Tonelli. To this end we first study the measurability of slice functions and prove the Monotone Class Lemma.

If $f:(X \times Y, \mathcal{M} \otimes \mathcal{N}) \rightarrow Z$ is a measurable function, then the slice fuctions which we obtain by fixing either the variable x or y are measurable with respect to \mathcal{M} and \mathcal{N}, respectively.

Picture

We define the slice functions

$$
f_{x}: Y \rightarrow Z, y \rightarrow f_{x}(y)=f(x, y) \text { and } f_{y}: X \rightarrow Z, x \rightarrow f_{y}(x)=f(x, y)
$$

Similarly for sets $E \subset X \times Y$ we define the projection of the sections:

$$
\begin{aligned}
& \text { Fixing } x: E_{x}=\{y \in Y \mid(x, y) \in E\} \\
& \text { Fixing } y: E_{y}=\{x \in X \mid(x, y) \in E\}
\end{aligned}
$$

This way we have

$$
\left(\mathbb{1}_{E}\right)_{x}=\mathbb{1}_{E_{x}} \text { and }\left(\mathbb{1}_{E}\right)_{y}=\mathbb{1}_{E_{y}} .
$$

Proposition 1 Suppose $E \in \mathcal{M} \otimes \mathcal{N}$ and $f:(X \times Y, \mathcal{M} \otimes \mathcal{N}) \rightarrow(Z, \mathcal{U})$ is a measurable function. Then
a) For all $(x, y) \in X \times Y$ we have $E_{x} \in \mathcal{N}$ and $E_{y} \in \mathcal{M}$.
b) f_{x} is \mathcal{M} measurable and f_{y} is \mathcal{N} measurable.
proof a) Let

$$
\mathcal{Q}=\left\{E \subset X \times Y \mid E_{x} \in \mathcal{N} \text { for all } x \in X \text { and } E_{y} \in \mathcal{M} \text { for all } y \in Y\right\} .
$$

Math 103: Measure Theory and Complex Analysis Fall 2018

Note that if $A \times B \in \mathcal{R}$, then

$$
(A \times B)_{x}=\quad \text { and }(A \times B)_{y}=
$$

Hence $\mathcal{R} \subset \mathcal{Q}$. We furthermore check that \mathcal{Q} is a σ algebra:
a) Clearly $X \times Y \in \mathcal{R} \subset \mathcal{Q}$ and $\emptyset \in \mathcal{R} \subset \mathcal{Q}$
b) $A \in \mathcal{Q} \Rightarrow A^{c} \in \mathcal{Q}$: if $A_{x} \in \mathcal{N}$ and $A_{y} \in \mathcal{M}$ for all $(x, y) \in X \times Y$ then

$$
A_{x}^{c}=\quad \text { and } A_{y}^{c}=
$$

c) $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{Q} \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{Q}$: if $\left(A_{i}\right)_{x} \in \mathcal{N}$ and $\left(A_{i}\right)_{y} \in \mathcal{M}$ for all $(x, y) \in X \times Y$ then for all $(x, y) \in X \times Y$

$$
\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)_{x}=\quad \text { and }\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)_{y}=\quad \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{Q}
$$

b) To prove part b) we note that as $\mathcal{R} \subset \mathcal{Q}$, we know that $\langle\mathcal{R}\rangle=\mathcal{M} \otimes \mathcal{N} \subset \mathcal{Q}$. Hence if $Z \supset U \in \mathcal{U}$ and f is measurable, then for all $(x, y) \in X \times Y$

$$
f^{-1}(U) \in \mathcal{M} \otimes \mathcal{N} \subset \mathcal{Q} \Rightarrow
$$

Hence f_{x} and f_{y} are measurable by part a).
Defintion 2 (monotone class) A subset $\mathcal{C} \subset \mathcal{P}(X)$ is called a monotone class if it is closed under increasing countable unions and decreasing countable sections.

Example Every σ algebra is a monotone class.
As the intersections of monotone classes are again monotone classes we define
Defintion 3 Let $\mathcal{E} \subset \mathcal{P}(X)$ be a subset of the power set of X then

$$
\mathcal{C}(\mathcal{E}):=\bigcap_{\mathcal{C}^{\prime} \text { monotone class }, \mathcal{E} \subset \mathcal{C}^{\prime}} \mathcal{C}^{\prime} .
$$

is called the monotone class generated by \mathcal{E}.

