Math 103: Measure Theory and Complex Analysis Fall 2018

10/08/18

Lecture 11

Chapter 2.2-Outer measures from premeasures

Outline We obtained the Lebesgue measure via the practical outer measure, which automatically induces a complete measure and a σ algebra. We can always construct outer measures from a simpler precursor of a measure, the premeasure.

Definition 1 (Algebra) Let X be a set. A collection of subsets $\mathcal{A} \subset \mathcal{P}(X)$ of X is called an algebra if
a) $X \in \mathcal{A}$
b) $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$ (\mathcal{A} is closed under complements).
c) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$ (\mathcal{A} is closed under finite unions).

Example $\mathcal{A}=\left\{\biguplus_{i=1}^{n} A_{i} \mid A_{i}=\left(a_{i}, b_{i}\right]\right.$ or $A_{i}=\left(a_{i}, \infty\right)$, where $\left.-\infty \leq a_{i} \leq b_{i}<+\infty\right\}$,

Set $\rho\left(\biguplus_{i=1}^{n}\left(a_{i}, b_{i}\right]\right)=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)$ then ρ^{o} is the Lebesgue measure (see Def. 2, Prop. 3).
Definition 2 (Premeasure) Let X be a set and $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra. A premeasure on \mathcal{A} is a map $\rho: \mathcal{A} \rightarrow[0, \infty]$, such that
a) $\rho(\emptyset)=0$.
b) If $\left(A_{i}\right)_{i \in \mathbb{N}} \subset \mathcal{A}$ and $A=\biguplus_{i \in \mathbb{N}} A_{i} \in \mathcal{A}$ then $\rho(A)=\sum_{i \in \mathbb{N}} \rho\left(A_{i}\right)$.

Proposition 3 If $\rho: \mathcal{A} \rightarrow[0, \infty]$ is a premeasure on an algebra \mathcal{A} of X, then

$$
\rho^{o}(A):=\inf \left\{\sum_{i \in \mathbb{N}} \rho\left(A_{i}\right) \mid A \subset \bigcup_{i \in \mathbb{N}} A_{i} \text { where } A_{i} \in \mathcal{A}\right\}
$$

is an outer measure on X, such that
a) $\left.\rho^{o}\right|_{\mathcal{A}}=\rho$.
b) $\mathcal{A} \subset \mathcal{M}^{o}$, the induced σ algebra of ρ^{o} measurable sets.
proof see Folland, Real Analysis, 2nd edition, Proposition 1.13.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Theorem 4 (Extension of premeasures) Let $\rho: \mathcal{A} \rightarrow[0, \infty]$ is a premeasure on an algebra \mathcal{A} of X. Let $\mathcal{M}=\langle\mathcal{A}\rangle$ be the σ algebra generated by \mathcal{A}. Then
a) there is a special measure $\mu: \mathcal{M} \rightarrow[0, \infty]$ such that $\left.\mu\right|_{\mathcal{M}}=\rho$.
b) If $\nu: \mathcal{M} \rightarrow[0, \infty]$ such that $\left.\nu\right|_{\mathcal{M}}=\rho$, then

$$
\nu(A) \leq \mu(A) \text { for all } A \in \mathcal{M} \text { and } \nu(A)=\mu(A) \text { if } \mu(A)<\infty
$$

proof a) Clearly the special measure is $\mu=\left.\rho^{o}\right|_{\mathcal{M}}=\left.\rho\right|_{\mathcal{A}}$. This is possible as

$$
\mathcal{A} \subset \mathcal{M}^{o} \Rightarrow
$$

Hence we can obtain μ by restriction to \mathcal{M}.
b) Now let ν be another measure on \mathcal{M}, such that $\left.\nu\right|_{\mathcal{A}}=\mu$. We first gather a few facts about ν and μ : if $E \subset \bigcup_{i \in \mathbb{N}} A_{i}$, where $A_{i} \in \mathcal{A}$, then

$$
\nu(E) \stackrel{\nu \text { measure }}{\leq}
$$

By approximating $\mu(E)$ with sums of the form $\sum_{i \in \mathbb{N}} \mu\left(A_{i}\right)$ we obtain for all $E \in \mathcal{M}$:

$$
\begin{equation*}
\nu(E) \leq \mu(E) \tag{1}
\end{equation*}
$$

Furthermore, if $\underline{\Lambda_{i \in \mathbb{N}} A_{i}}$, where $A_{i} \in \mathcal{A}$, then

$$
\begin{equation*}
\nu(A)^{\nu \text { measure }}= \tag{2}
\end{equation*}
$$

If $\underline{E \in \mathcal{M}}$ and $\mu(E)<\infty$, then by the definition of ρ^{o} we can choose "approximating" $A_{i} \in \mathcal{A}$, such that $E \subset \overline{\bigcup_{i \in \mathbb{N}} A_{i}=} A$ and

$$
\mu(A)=
$$

This implies that

$$
\nu(E) \stackrel{(1)}{\leq}
$$

Since $\epsilon>0$ is arbitrary we obtain with (1) that $\nu(E)=\mu(E)$.

Math 103: Measure Theory and Complex Analysis
 Fall 2018

Definition 5 (σ finite) If \mathcal{A} is an algebra in X, then a premeasure $\rho: \mathcal{A} \rightarrow[0, \infty]$ is said σ finite, if

$$
X=\bigcup_{i \in \mathbb{N}} A_{i} \text { where } A_{i} \in \mathcal{A} \text { and } \rho\left(A_{i}\right)<\infty \text { for all } i \in \mathbb{N}
$$

Example $\mathbb{R}=\biguplus_{n \in \mathbb{Z}}(n, n+1]$.

Proposition (Uniqueness of extension) If $\rho: \mathcal{A} \rightarrow[0, \infty]$ is σ finite then it has a unique extension on $\langle\mathcal{A}\rangle=\mathcal{M}$.
proof Suppose $X=\bigcup_{i \in \mathbb{N}} A_{i}$. We already know that the statement is true for all sets of finite measure in \mathcal{M}. We also know that in \mathcal{M} we can decompose $\bigcup_{i \in \mathbb{N}} A_{i}$ into a union of mutually disjoint measurable sets of finite measure (see proof of Chapter 1.9. Theorem 5). Therefore we may assume that $X=\biguplus_{i \in \mathbb{N}} A_{i}$, where the A_{i} satisfy the conditions of the previous definition. Then for all $E \in \mathcal{M}$ we have

$$
\mu(E)=
$$

Hence the extension is unique.
Question How is the Lebesgue measure a special case of this?
If we set

- $\mathcal{A}=\left\{\biguplus_{i=1}^{n} A_{i} \mid A_{i}=\left(a_{i}, b_{i}\right]\right.$ or $A_{i}=\left(a_{i}, \infty\right)$, where $\left.-\infty \leq a_{i} \leq b_{i}<+\infty\right\}$
- $\rho\left(\biguplus_{i=1}^{n}\left(a_{i}, b_{i}\right]\right)=\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)$.

Then ρ is well-defined, i.e. does not depend on the decomposition into intervals. Furthermore the σ algebra generated by \mathcal{A} is $\mathcal{B}(\mathbb{R})$ and its completion is Λ°.
For details see Folland, Real Analysis Ch. 1.5.

Math 103: Measure Theory and Complex Analysis Fall 2018

Chapter 2.3. Product measures

Outline Given two measure spaces (X, \mathcal{M}, μ) and (X, \mathcal{N}, ν) we can construct a natural measure $\mu \times \nu$ on $X \times Y$.

Definition 1 A measurable rectangle in $X \times Y$ is an element of the form

$$
A \times B \text { where } A \in \mathcal{M}, B \in \mathcal{N}
$$

Let $\mathcal{R}=\{A \times B \mid A \in \mathcal{M}, B \in \mathcal{N}\}$ be the set of all measurable rectangles. We denote by $\mathcal{M} \otimes \mathcal{N}=\langle\mathcal{R}\rangle$ the σ algebra generated by the collection of measurable rectangles.

Picture

As a precursor we look at the algebra formed by finite unions of measurable rectangles.
Lemma 2 Let $\mathcal{A}=\left\{\bigcup_{i=1}^{n} A_{i} \mid A_{i} \in \mathcal{R}\right\}$. Then \mathcal{A} is an algebra.
proof We check the conditions for an algebra.
a) $X \times Y \in \mathcal{A}$: this is clear.
b) $R \in \mathcal{A} \Rightarrow R^{c} \in \mathcal{A}$: consider two measurable rectangles $A \times B$ and $C \times D$. Then
1.) $(A \times B) \cap(C \times D)=\quad \in \mathcal{R}$.

This means that the intersection is again a rectangle.
2.) $(A \times B)^{c}=$ \mathcal{R}.
By 1.) this means that $(A \times B)^{c}$ can be written as the union of two rectangles.
Picture

Math 103: Measure Theory and Complex Analysis Fall 2018

3.) $(A \times B) \cup(C \times D)=$ This means that the union of two rectangles can be written as the disjoint union of three rectangles.
and $A \times B \cap C \times D=(A \cap C) \times(B \cap D) \in \mathcal{R}$.

Picture

In general we have that for $R_{i}=A_{i} \times B_{i} \in \mathcal{R}$:

$$
\left(\bigcup_{i=1}^{n} A_{i} \times B_{i}\right)^{c}=\bigcap_{i=1}^{n}\left(A_{i} \times B_{i}\right)^{c} \stackrel{2 .)}{=} \bigcap_{i=1}^{n}\left(A_{i}^{c} \times Y\right) \cup\left(X \times B_{i}^{c}\right)
$$

To prove that the last term can be written as a union of rectangles we note that a union of two rectangles can be written as the union of three disjoint rectangles by 3.). Hence taking the intersection is equal to taking the intersection of a disjoint union of rectangles, which gives again rectangles. In total the last term can be written as a disjoint union of rectangles.
c) $R_{1}, R_{2} \in \mathcal{A} \Rightarrow R_{1} \cup R_{2} \in \mathcal{A}$: there is nothing to prove, as the union of two finite unions of rectangles is again a finite union of rectangles.

In total \mathcal{A} is an algebra.

