10/08/18

Lecture 11

Chapter 2.2 - Outer measures from premeasures

Outline We obtained the Lebesgue measure via the practical outer measure, which automatically induces a complete measure and a σ algebra. We can always construct outer measures from a simpler precursor of a measure, the **premeasure**.

Definition 1 (Algebra) Let X be a set. A collection of subsets $\mathcal{A} \subset \mathcal{P}(X)$ of X is called an **algebra** if

- a) $X \in \mathcal{A}$
- b) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$ (\mathcal{A} is closed under complements).
- c) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$ (\mathcal{A} is closed under finite unions).

Example $\mathcal{A} = \{ \biguplus_{i=1}^{n} A_i \mid A_i = (a_i, b_i] \text{ or } A_i = (a_i, \infty), \text{ where } -\infty \leq a_i \leq b_i < +\infty \},\$

Set $\rho(\bigcup_{i=1}^{n}(a_i, b_i]) = \sum_{i=1}^{n}(b_i - a_i)$ then ρ^o is the Lebesgue measure (see **Def. 2**, **Prop. 3**).

Definition 2 (Premeasure) Let X be a set and $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra. A **premeasure** on \mathcal{A} is a map $\rho : \mathcal{A} \to [0, \infty]$, such that

a) $\rho(\emptyset) = 0.$

b) If
$$(A_i)_{i \in \mathbb{N}} \subset \mathcal{A}$$
 and $A = \biguplus_{i \in \mathbb{N}} A_i \in \mathcal{A}$ then $\rho(A) = \sum_{i \in \mathbb{N}} \rho(A_i)$.

Proposition 3 If $\rho: \mathcal{A} \to [0, \infty]$ is a premeasure on an algebra \mathcal{A} of X, then

$$\rho^{o}(A) := \inf\{\sum_{i \in \mathbb{N}} \rho(A_{i}) \mid A \subset \bigcup_{i \in \mathbb{N}} A_{i} \text{ where } A_{i} \in \mathcal{A}\}$$

is an outer measure on X, such that

- a) $\rho^{o}|_{\mathcal{A}} = \rho$.
- b) $\mathcal{A} \subset \mathcal{M}^{o}$, the induced σ algebra of ρ^{o} measurable sets.

proof see Folland, Real Analysis, 2nd edition, Proposition 1.13.

10/08/18

Theorem 4 (Extension of premeasures) Let $\rho : \mathcal{A} \to [0, \infty]$ is a premeasure on an algebra \mathcal{A} of X. Let $\mathcal{M} = \langle \mathcal{A} \rangle$ be the σ algebra generated by \mathcal{A} . Then

a) there is a special measure $\mu : \mathcal{M} \to [0, \infty]$ such that $\mu|_{\mathcal{M}} = \rho$.

b) If $\nu : \mathcal{M} \to [0, \infty]$ such that $\nu|_{\mathcal{M}} = \rho$, then

$$\nu(A) \le \mu(A)$$
 for all $A \in \mathcal{M}$ and $\nu(A) = \mu(A)$ if $\mu(A) < \infty$.

proof a) Clearly the special measure is $|\mu = \rho^o|_{\mathcal{M}} = \rho|_{\mathcal{A}}|$. This is possible as

 $\mathcal{A}\subset\mathcal{M}^{o}\Rightarrow$

Hence we can obtain μ by restriction to \mathcal{M} .

b) Now let ν be another measure on \mathcal{M} , such that $\nu|_{\mathcal{A}} = \mu$. We first gather a few facts about ν and μ : if $E \subset \bigcup_{i \in \mathbb{N}} A_i$, where $A_i \in \mathcal{A}$, then

$$\nu(E) \stackrel{\nu \text{ measure}}{\leq}$$

By approximating $\mu(E)$ with sums of the form $\sum_{i \in \mathbb{N}} \mu(A_i)$ we obtain for all $E \in \mathcal{M}$:

$$\nu(E) \le \mu(E). \tag{1}$$

Furthermore, if $\underline{A = \bigcup_{i \in \mathbb{N}} A_i}$, where $A_i \in \mathcal{A}$, then

$$\nu(A) \stackrel{\nu \text{ measure}}{=} \tag{2}$$

If $\underline{E \in \mathcal{M}}$ and $\mu(E) < \infty$, then by the definition of ρ^o we can choose "approximating" $A_i \in \mathcal{A}$, such that $E \subset \bigcup_{i \in \mathbb{N}} A_i = A$ and

$$\mu(A) =$$

This implies that

$$\nu(E) \stackrel{(1)}{\leq}$$

Since $\epsilon > 0$ is arbitrary we obtain with (1) that $\nu(E) = \mu(E)$.

10/08/18

Definition 5 (σ finite) If \mathcal{A} is an algebra in X, then a premeasure $\rho : \mathcal{A} \to [0, \infty]$ is said σ finite, if

 $X = \bigcup_{i \in \mathbb{N}} A_i \text{ where } A_i \in \mathcal{A} \text{ and } \rho(A_i) < \infty \text{ for all } i \in \mathbb{N}.$

Example $\mathbb{R} = \biguplus_{n \in \mathbb{Z}} (n, n+1].$

Proposition (Uniqueness of extension) If $\rho : \mathcal{A} \to [0, \infty]$ is σ finite then it has a unique extension on $\langle \mathcal{A} \rangle = \mathcal{M}$.

proof Suppose $X = \bigcup_{i \in \mathbb{N}} A_i$. We already know that the statement is true for all sets of finite measure in \mathcal{M} . We also know that in \mathcal{M} we can decompose $\bigcup_{i \in \mathbb{N}} A_i$ into a union of mutually disjoint measurable sets of finite measure (see proof of **Chapter 1.9. Theorem 5**). Therefore we may assume that $X = \biguplus_{i \in \mathbb{N}} A_i$, where the A_i satisfy the conditions of the previous definition. Then for all $E \in \mathcal{M}$ we have

$$\mu(E) =$$

Hence the extension is unique.

Question How is the Lebesgue measure a special case of this?

If we set

- $\mathcal{A} = \{ \biguplus_{i=1}^n A_i \mid A_i = (a_i, b_i] \text{ or } A_i = (a_i, \infty), \text{ where } -\infty \le a_i \le b_i < +\infty \}$
- $\rho(\biguplus_{i=1}^{n}(a_i, b_i]) = \sum_{i=1}^{n}(b_i a_i).$

Then ρ is well-defined, i.e. does not depend on the decomposition into intervals. Furthermore the σ algebra generated by \mathcal{A} is $\mathcal{B}(\mathbb{R})$ and its completion is Λ^{o} . For details see *Folland*, *Real Analysis* Ch. 1.5.

10/08/18

Chapter 2.3. Product measures

Outline Given two measure spaces (X, \mathcal{M}, μ) and (X, \mathcal{N}, ν) we can construct a natural measure $\mu \times \nu$ on $X \times Y$.

Definition 1 A measurable rectangle in $X \times Y$ is an element of the form

 $A \times B$ where $A \in \mathcal{M}, B \in \mathcal{N}$.

Let $\mathcal{R} = \{A \times B \mid A \in \mathcal{M}, B \in \mathcal{N}\}$ be the set of all measurable rectangles. We denote by $\mathcal{M} \otimes \mathcal{N} = \langle \mathcal{R} \rangle$ the σ algebra generated by the collection of measurable rectangles.

Picture

As a precursor we look at the algebra formed by finite unions of measurable rectangles.

Lemma 2 Let $\mathcal{A} = \{\bigcup_{i=1}^{n} A_i \mid A_i \in \mathcal{R}\}$. Then \mathcal{A} is an algebra.

proof We check the conditions for an algebra.

- a) $X \times Y \in \mathcal{A}$: this is clear.
- b) $R \in \mathcal{A} \Rightarrow R^c \in \mathcal{A}$: consider two measurable rectangles $A \times B$ and $C \times D$. Then
 - 1.) $(A \times B) \cap (C \times D) = \in \mathcal{R}$. This means that the intersection is again a rectangle.
 - 2.) $(A \times B)^c = \mathcal{R}$. By 1.) this means that $(A \times B)^c$ can be written as the union of two rectangles. **Picture**

10/08/18

3.) $(A \times B) \cup (C \times D) =$

This means that the union of two rectangles can be written as the disjoint union of three rectangles.

and
$$A \times B \cap C \times D = (A \cap C) \times (B \cap D) \in \mathcal{R}$$
.

Picture

In general we have that for $R_i = A_i \times B_i \in \mathcal{R}$:

$$(\bigcup_{i=1}^{n} A_i \times B_i)^c = \bigcap_{i=1}^{n} (A_i \times B_i)^c \stackrel{2.)}{=} \bigcap_{i=1}^{n} (A_i^c \times Y) \cup (X \times B_i^c)$$

To prove that the last term can be written as a union of rectangles we note that a union of two rectangles can be written as the union of three disjoint rectangles by 3.). Hence taking the intersection is equal to taking the intersection of a disjoint union of rectangles, which gives again rectangles. In total the last term can be written as a disjoint union of rectangles.

c) $R_1, R_2 \in \mathcal{A} \Rightarrow R_1 \cup R_2 \in \mathcal{A}$: there is nothing to prove, as the union of two finite unions of rectangles is again a finite union of rectangles.

In total \mathcal{A} is an algebra.