Math 73/103 Assignment Four
Due Date TBA

1. [Optional: Do not turn in] Prove the version of Fubini and Tonelli for complete measures
stated in lecture: Let (X,9, ) and (Y,M,v) be complete o-finite measure spaces. Let
(X x Y, £, \) be the completion of (X x Y, M@ N, u X v). Suppose that f is £-measurable
and that either (a) f > 0 or (b) f € £'(\). Show that f, and f¥ are measurable almost
everywhere and in case (b), then they are integrable almost everywhere. And, with suitable
modifications on null sets, z — [, f, dvand y — [, fYdu are measurable and even integrable
in case (b). Then show that the iterated integrals both agree with the double integral.

(Here is what I suggest, let g be a 9 ® JN-measurable function that equals f almost
everywhere. Then prove the following lemmas:

(a) f EeMeN, and p x v(E) =0, then v(E,) = 0 = p(EY) for almost all z and y.

(b) If f is £-measurable and f = 0 A-almost everywhere, then f, and fY are integrable
almost everywhere and fX fldu=0= fY fedv.)

2. Let v be a complex measure on (X, ).

(a) Show that there is a measure p and a measurable function ¢ : X — C so that |¢| = 1,
and such that for all £ € I,

V(E):/E<pdu. (1)

(Hint: write v = vy — vy +i(v3 — vy) for measures v;. Put py = vy + v5 + v3 + v4. Note
that v, < pp and use the Raydon Nikodym Theorem to show that o will satisfy (1)
provided we don’t require |¢| = 1. You can then use without proof the fact that any
complex-valued measurable function h can be written as h = ¢ |h| with ¢ unimodular
and measurable.)

(b) [Optional: Do not turn in] Show that the measure p above is unique, and that ¢
is determined almost everywhere [p]. (Hint: if g/ and ¢ also satisfy (1), then show

that ¢/ < u, and that Ccll—*/i = 1 a.e. Also note that if ¢’ is unimodular and E € 9N,

then £ = (Ji_, E; where B, = {z € E: Rey/ >0}, By = {z € E: Rey¢/ <0},
Es={zeE:Imy¢ >0},and By ={z e F:Imy¢' <0}.)



Comment: the measure p in question 2 is called the total variation of v, and the usual
notation is |v|. It is defined by different methods in your text: see chapter 6. One can prove
facts like |v|(E) > |v(E)|, although one doesn’t always have |v|(E) = |v(E)|; this also proves
that even classical notation can be unfortunate.

The remaining problems reprise some of the fundamental results about functions of a
complex variable covered in elementary courses but not covered in chapter ten of our text
[2]. Most of this material — with perhaps the exception of problem 7 — are part of the
early chapters in basic texts such as Conway [1], Brown & Churchill or Saff & Snider. Feel
free to sneak a peak.

Let € be a domain in C and assume that f : Q — C is a function. Of course, we can
view €2 as an open subset of R? and define u,v :  — R by

u(z,y) :=Re(f(z+1iy)) and ov(z,y)=Im(f(z+iy))
We say that the Cauchy-Riemann Equations hold at zg = xo + iy if the partial derivatives
of w and v exist at (z,yo) and
Uz (%o, Yo) = vy(wo,y0) and  uy(zo,yo) = —v2(To, Yo)- (CR)
We often abuse notation slightly, and say that (CR) amounts to f,(29) = ifs(20). (Just to
be specific, fo(zo + o) := uz(20, o) + ivz(z0, Yo).)

3. Suppose that f’(zy) exists. Show that

fo(z0) = ['(20) = —ify(20). (3)
Conclude that the Cauchy-Riemann equations hold at zy whenever f’(zg) exists. Verify (3)
when f(z) = 22. (Write f'(2) = limp_ £ (f(z + h) — f(2)). If the limit exists, so does the
limit when we let h = x + i0 be real or h = 0 + iy is purely imaginary.)

4. Suppose that Q is a region in C, and that f € H(2). Show that if f'(z) = 0 for all z € Q,
then f is constant. (You can prove for yourself or use without proof that if u : 2 C R* -+ R
is such that u,(z,y) = 0 = uy(x,y) for all (z,y) € Q then u is constant — provided Q is a
region.)

5. Suppose that Q is a region and f € H(2). Show that if f is real-valued in Q, then f is
constant.

6. Suppose that Q is a region and f € H(Q). Suppose that z — |f(z)| is constant on €.
Show that f must be constant. (Consider |f(2)[%.)
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We let f, u, v and 2 be as above. Define
F:QCR*—>R* by F(z,y)= (u(z,y),v(z,y)).

Pretend that you remember that F is differentiable at (zo,y) € € if there is a linear function
L : R? — R? such that

lim | F'(xo + h,yo + k) — F(x0,y0) — L(h, k)|

=0,
(hyk)—(0,0) | (h, k)|l

in which case, the partials of v and v must exist and L is given by the Jacobian Matrix

L] = <ux<x0?y0> Uy(%ayo)) '

vz (20, Yo) U?J(:C()a Yo)

(Of course, here ||(z,9)| = V22 +y? = |z + 1y|.)

7. Let f, F', u, v and ) be as above. Let zy = x¢ + iyo € 2. Show that f’(zy) exists if and
only if the Cauchy-Riemann equations hold at zo and F' is differentiable at (zg,yo). (Hint:
if we let z = h + ik and if T is given by the matrix

7] = (Ux(ﬂﬁoayt)) —Ux(fm?/o)) 7

Ux(%, yo) U:c(%, Yo)

then
[ F'(xo + h,yo + k) — F(xo,90) — T(h, k)|l = | f(2 + 20) — f(20) — wz],

where w = u, (2o, Yo) + (20, Yo) = fz(20). Then remember (3).)

Problem #7 has an important Corollary. We learn in multivariable calculus, that F' is
differentiable at (xg, yo) if the partial derivatives of u and v exist in a neighborhood of (¢, yo)
and are continuous at (zg,yo). Hence we get as a Corollary of problem #7, with f, u and
v defined as above, that if v and v have continuous partial derivatives in a neighborhood
of (zo,y0) and if the Cauchy-Riemann equations hold at zp, then f'(zy) exists. Use this
observation in problem #8.

8. Define exp : C — C by exp(z + iy) = e”(cos(y) + isin(y)). Show that exp € H(C) and
exp/(z) = exp(z) for all z € C.



If  is open in C or R?, then we say u :  — R is harmonic if it has continuous second
partial derivatives and if it is a solution to Laplace’s equation:

0’u  0%*u B

927 a2 =0 (L)

9. Suppose that f € H(). Let u(z,y) = Re(f(z + dy)). Assuming u has continuous
second partials, show that u is harmonic in €.

10. Suppose that u : 2 — R is harmonic. We say v : 0 — R is a harmonic conjugate for
wif f(z +1iy) = u(z,y) + iv(z,y) defines a holomorphic function on 2. Find all harmonic
conjugates for u(z,y) = 2zy.

For the purposes of this assignment only, we’ll call a region 2 a SC' region if every
f € H(Q) has an antiderivative in Q. For example, we have shown in lecture that every
convex region is a SC region. Later, I hope that we’ll see that any simply connected region
is a SC region. In fact, a region is a SC-region if and only if it is simply connected.

11. Suppose that 2 is a SC region and that « is harmonic in {2. Show that v has a harmonic
conjugate in . (Hint: we need to find a function f € H(2) such that u = Re(f). However,
consider g = u, — iu,. Show that g € H(Q) and consider an anti-derivative f for g in €.
As in problem 4, you may use without proof the fact that if w :  — R is continuous and
w, =0 = w, in §, then w is constant.)

If u = Re(f), then u, = Re(f’) and u, = Re(—if’). Thus, it is a consequence of
question #11 (and the deep result that f € H(2) implies f is analytic) that every harmonic
function has continuous partial derivatives of all orders.

12. Just as in question #8, we’ll be fancy and write exp(z) in place of e*. Suppose that €2
is a SC region and that 0 ¢ Q. Then show there is a f € H(Q2) such that

exp(f(z)) = z.

We call f a branch of log(z) in 2. (Hint: start by letting f be an antiderivative of 1/z. and
recall that exp(z) = a has infinitely many solutions for all a # 0.)

13. Show that f(z) = 1/z can’t have an antiderivative in the punctured complex plane
C*:= C\ {0}. Conclude that there is no (holomorphic) branch of log z in C*.
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