
Math 73/103 Assignment Four

Due Date TBA

1. [Optional: Do not turn in] Prove the version of Fubini and Tonelli for complete measures
stated in lecture: Let (X,M, µ) and (Y,N, ν) be complete σ-finite measure spaces. Let
(X × Y,L, λ) be the completion of (X × Y,M⊗N, µ× ν). Suppose that f is L-measurable
and that either (a) f ≥ 0 or (b) f ∈ L1(λ). Show that fx and f y are measurable almost
everywhere and in case (b), then they are integrable almost everywhere. And, with suitable
modifications on null sets, x 7→

∫
Y
fx dν and y 7→

∫
X
f y dµ are measurable and even integrable

in case (b). Then show that the iterated integrals both agree with the double integral.
(Here is what I suggest, let g be a M ⊗ N-measurable function that equals f almost

everywhere. Then prove the following lemmas:

(a) If E ∈M⊗N, and µ× ν(E) = 0, then ν(Ex) = 0 = µ(Ey) for almost all x and y.

(b) If f is L-measurable and f = 0 λ-almost everywhere, then fx and f y are integrable
almost everywhere and

∫
X
f y dµ = 0 =

∫
Y
fx dν.)

2. Let ν be a complex measure on (X,M).

(a) Show that there is a measure µ and a measurable function ϕ : X → C so that |ϕ| = 1,
and such that for all E ∈M,

ν(E) =

∫
E

ϕdµ. (†)

(Hint: write ν = ν1− ν2 + i(ν3− ν4) for measures νi. Put µ0 = ν1 + ν2 + ν3 + ν4. Note
that νk � µ0 and use the Raydon Nikodym Theorem to show that µ0 will satisfy (†)
provided we don’t require |ϕ| = 1. You can then use without proof the fact that any
complex-valued measurable function h can be written as h = ϕ · |h| with ϕ unimodular
and measurable.)

(b) [Optional: Do not turn in] Show that the measure µ above is unique, and that ϕ
is determined almost everywhere [µ]. (Hint: if µ′ and ϕ′ also satisfy (†), then show
that µ′ � µ, and that dµ′

dµ
= 1 a.e. Also note that if ϕ′ is unimodular and E ∈ M,

then E =
⋃4
i=1Ei where E1 = {x ∈ E : Reϕ′ > 0 }, E2 = {x ∈ E : Reϕ′ < 0 },

E3 = {x ∈ E : Imϕ′ > 0 }, and E4 = {x ∈ E : Imϕ′ < 0 }.)
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Comment: the measure µ in question 2 is called the total variation of ν, and the usual
notation is |ν|. It is defined by different methods in your text: see chapter 6. One can prove
facts like |ν|(E) ≥ |ν(E)|, although one doesn’t always have |ν|(E) = |ν(E)|; this also proves
that even classical notation can be unfortunate.

The remaining problems reprise some of the fundamental results about functions of a
complex variable covered in elementary courses but not covered in chapter ten of our text
[2]. Most of this material — with perhaps the exception of problem 7 — are part of the
early chapters in basic texts such as Conway [1], Brown & Churchill or Saff & Snider. Feel
free to sneak a peak.

Let Ω be a domain in C and assume that f : Ω → C is a function. Of course, we can
view Ω as an open subset of R2 and define u, v : Ω→ R by

u(x, y) := Re
(
f(x+ iy)

)
and v(x, y) = Im

(
f(x+ iy)

)
We say that the Cauchy-Riemann Equations hold at z0 = x0 + iy0 if the partial derivatives
of u and v exist at (x0, y0) and

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0). (CR)

We often abuse notation slightly, and say that (CR) amounts to fy(z0) = ifx(z0). (Just to
be specific, fx(x0 + iy0) := ux(x0, y0) + ivx(x0, y0).)

3. Suppose that f ′(z0) exists. Show that

fx(z0) = f ′(z0) = −ify(z0). (3)

Conclude that the Cauchy-Riemann equations hold at z0 whenever f ′(z0) exists. Verify (3)
when f(z) = z2. (Write f ′(z) = limh→0

1
h

(
f(z + h) − f(z)

)
. If the limit exists, so does the

limit when we let h = x+ i0 be real or h = 0 + iy is purely imaginary.)

4. Suppose that Ω is a region in C, and that f ∈ H(Ω). Show that if f ′(z) = 0 for all z ∈ Ω,
then f is constant. (You can prove for yourself or use without proof that if u : Ω ⊂ R2 → R
is such that ux(x, y) = 0 = uy(x, y) for all (x, y) ∈ Ω then u is constant — provided Ω is a
region.)

5. Suppose that Ω is a region and f ∈ H(Ω). Show that if f is real-valued in Ω, then f is
constant.

6. Suppose that Ω is a region and f ∈ H(Ω). Suppose that z 7→ |f(z)| is constant on Ω.
Show that f must be constant. (Consider |f(z)|2.)
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We let f , u, v and Ω be as above. Define

F : Ω ⊂ R2 → R2 by F (x, y) =
(
u(x, y), v(x, y)

)
.

Pretend that you remember that F is differentiable at (x0, y0) ∈ Ω if there is a linear function
L : R2 → R2 such that

lim
(h,k)→(0,0)

‖F (x0 + h, y0 + k)− F (x0, y0)− L(h, k)‖
‖(h, k)‖

= 0,

in which case, the partials of u and v must exist and L is given by the Jacobian Matrix

[L] =

(
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

)
.

(Of course, here ‖(x, y)‖ =
√
x2 + y2 = |x+ iy|.)

7. Let f , F , u, v and Ω be as above. Let z0 = x0 + iy0 ∈ Ω. Show that f ′(z0) exists if and
only if the Cauchy-Riemann equations hold at z0 and F is differentiable at (x0, y0). (Hint:
if we let z = h+ ik and if T is given by the matrix

[T ] =

(
ux(x0, y0) −vx(x0, y0)
vx(x0, y0) ux(x0, y0)

)
,

then
‖F (x0 + h, y0 + k)− F (x0, y0)− T (h, k)‖ = |f(z + z0)− f(z0)− ωz|,

where ω = ux(x0, y0) + ivx(x0, y0) = fx(z0). Then remember (3).)

Problem #7 has an important Corollary. We learn in multivariable calculus, that F is
differentiable at (x0, y0) if the partial derivatives of u and v exist in a neighborhood of (x0, y0)
and are continuous at (x0, y0). Hence we get as a Corollary of problem #7, with f , u and
v defined as above, that if u and v have continuous partial derivatives in a neighborhood
of (x0, y0) and if the Cauchy-Riemann equations hold at z0, then f ′(z0) exists. Use this
observation in problem #8.

8. Define exp : C→ C by exp(x+ iy) = ex
(
cos(y) + i sin(y)

)
. Show that exp ∈ H(C) and

exp′(z) = exp(z) for all z ∈ C.
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If Ω is open in C or R2, then we say u : Ω→ R is harmonic if it has continuous second
partial derivatives and if it is a solution to Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0. (L)

9. Suppose that f ∈ H(Ω). Let u(x, y) = Re
(
f(x + iy)

)
. Assuming u has continuous

second partials, show that u is harmonic in Ω.

10. Suppose that u : Ω → R is harmonic. We say v : Ω → R is a harmonic conjugate for
u if f(x + iy) = u(x, y) + iv(x, y) defines a holomorphic function on Ω. Find all harmonic
conjugates for u(x, y) = 2xy.

For the purposes of this assignment only, we’ll call a region Ω a SC region if every
f ∈ H(Ω) has an antiderivative in Ω. For example, we have shown in lecture that every
convex region is a SC region. Later, I hope that we’ll see that any simply connected region
is a SC region. In fact, a region is a SC-region if and only if it is simply connected.

11. Suppose that Ω is a SC region and that u is harmonic in Ω. Show that u has a harmonic
conjugate in Ω. (Hint: we need to find a function f ∈ H(Ω) such that u = Re(f). However,
consider g = ux − iuy. Show that g ∈ H(Ω) and consider an anti-derivative f for g in Ω.
As in problem 4, you may use without proof the fact that if w : Ω → R is continuous and
wx ≡ 0 ≡ wy in Ω, then w is constant.)

If u = Re(f), then ux = Re(f ′) and uy = Re(−if ′). Thus, it is a consequence of
question #11 (and the deep result that f ∈ H(Ω) implies f is analytic) that every harmonic
function has continuous partial derivatives of all orders.

12. Just as in question #8, we’ll be fancy and write exp(z) in place of ez. Suppose that Ω
is a SC region and that 0 /∈ Ω. Then show there is a f ∈ H(Ω) such that

exp
(
f(z)

)
= z.

We call f a branch of log(z) in Ω. (Hint: start by letting f be an antiderivative of 1/z. and
recall that exp(z) = a has infinitely many solutions for all a 6= 0.)

13. Show that f(z) = 1/z can’t have an antiderivative in the punctured complex plane
C∗ := C \ {0}. Conclude that there is no (holomorphic) branch of log z in C∗.
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