Math 73/103 Final Exam

Instructions: You should return your exam to me in my office before noon on Tuesday, November 21, 2017.

- (a) You must work alone. You may use the text, class notes and past homeworks, but no other sources allowed.
- (b) Please turn in your solutions on one side only of $8\frac{1}{2}$ " × 11" paper. Put name on the first page and staple in the upper left-hand corner.
- (c) If you are not using LATEX, please start each problem on a new page.
- 1. (25) Let u be a Harmonic function on a simply connected region Ω . Can u have any local maximums? What about local minimums? (Suggestion, if u were the real part of $f \in H(\Omega)$, then you could consider $g(z) = e^{f(z)}$.)
- 2. (25) Suppose that Ω is a region and that $a \in \Omega$.
 - (a) Suppose that $g \in H(\Omega \setminus \{a\})$ and that g has a pole of order m at a. Show that there is a $h \in H(\Omega)$ such that $h(a) \neq 0$ and

$$g(z) = \frac{h(z)}{(z-a)^m} \quad \text{for all } z \in \Omega \setminus \{a\}.$$

- (b) Show that $f \in H(\Omega)$ has a zero of order m at a if and only if 1/f has a pole of order m at a.
- 3. (25) Suppose that Ω is a simply connected region and that $f \in H(\Omega)$ never vanishes. Show that there is a $h \in H(\Omega)$ such that $f = \exp(h)$. (This was part of our "End Game Theorem" which I now realize I never assigned.)
- 4. (25) Suppose that f has an isolated singularity at a and that the real part of f is bounded above near a; that is, there is a r > 0 such that

$$\operatorname{Re} f(z) \le M < \infty \quad \text{for all } z \in D'_r(a).$$
 (‡)

Show that a is a removable singularity for f. (This problem is quite a bit easier of we replace "Re $f(z) \leq M$ " with " $|\operatorname{Re} f(z)| \leq M$ " in (‡). You can work that version for partial credit if you choose — just be clear which version you are solving. And just to be clear, no it is not "obvious" that if $g(z) = e^{f(z)}$ as a removable singularity at a, then so does f.)

5. (25) Let (X, \mathfrak{M}, μ) be a measure space with $\mu(X) = 1$. For each $n \in \mathbf{Z}_+$, let $A_n \in \mathfrak{M}$ be such that $\mu(A_n) = 1$. Show that if $A = \bigcap_n A_n$, then $\mu(A) = 1$.

6. (25) Let $(\mathbf{R}, \mathfrak{M}, m)$ be Lebesgue measure. Recall that $E \in \mathfrak{M}$ if and only if $E + y \in \mathfrak{M}$ for all $y \in \mathbf{R}$, and that m(E) = m(E + y).

(a) Let $f \in \mathcal{L}^1(m)$ and $y \in \mathbf{R}$. Define g(x) = f(x - y). Show that $g \in \mathcal{L}^1(m)$ and that

$$\int_{\mathbf{R}} f(x) \, dm(x) = \int_{\mathbf{R}} f(x - y) \, dm(x).$$

(b) If $f \in \mathcal{L}^1(m)$, let $\lambda_y(f) \in \mathcal{L}^1(m)$ be given by $\lambda_y(f)(x) = f(x - y)$. Show that $y \mapsto \lambda_y(f)$ is continuous from \mathbf{R} to $L^1(m)$ in the sense that if $y_n \to y$ in \mathbf{R} , then $\|\lambda_{y_n}(f) - \lambda_y(f)\|_1 \to 0$.

(Hint: in part (a) start with characteristic functions. In part (b), you can reduce to the case where y = 0, and the conclusion is not so hard if f is continuous and vanishes off a bounded interval.)

7. (25) Recall that if X is a topological space, then $\mathfrak{B}(X)$ is the σ -algebra of Borel sets in X. Show that $\mathfrak{B}(\mathbf{R}^2) = \mathfrak{B}(\mathbf{R}) \otimes \mathfrak{B}(\mathbf{R})$.

- 8. (25) Suppose that $f: \mathbf{R} \to \mathbf{R}$ is Lebesgue measurable.
 - (a) Show that $F: (\mathbf{R}^2, \mathfrak{M} \otimes \mathfrak{M}) \to (\mathbf{R}^2, \mathfrak{B}(\mathbf{R}^2))$ given by F(x, y) = (f(x), y) is measurable. (This just means that $F^{-1}(V) \in \mathfrak{M} \otimes \mathfrak{M}$ when V is open in \mathbf{R}^2 .)
 - (b) Show that

$$G(f) = \{ (x, f(x)) \in \mathbf{R}^2 : x \in \mathbf{R} \}$$

is in $\mathfrak{M} \otimes \mathfrak{M}$.

(c) Show that for almost all y,

$$m(\lbrace x \in \mathbf{R} : f(x) = y \rbrace) = 0.$$

(Hint: all these parts are connected. Any if you were to use something like Tonelli or Fubini's Theorem, you should carefully explain how.)