Math 73/103 Assignment Four Due Date TBA

1. Let ν be a complex measure on (X, \mathfrak{M}).
(a) Show that there is a measure μ and a measurable function $\varphi: X \rightarrow \mathbf{C}$ so that $|\varphi|=1$, and such that for all $E \in \mathfrak{M}$,

$$
\nu(E)=\int_{E} \varphi d \mu
$$

(Hint: write $\nu=\nu_{1}-\nu_{2}+i\left(\nu_{3}-\nu_{4}\right)$ for measures ν_{i}. Put $\mu_{0}=\nu_{1}+\nu_{2}+\nu_{3}+\nu_{4}$. Then μ_{0} will satisfy (\dagger) provided we don't require $|\varphi|=1$. You can then use without proof the fact that any complex-valued measurable function h can be written as $h=\varphi \cdot|h|$ with φ unimodular and measurable.)
(b) [Optional: Do not turn in] Show that the measure μ above is unique, and that φ is determined almost everywhere $[\mu]$. (Hint: if μ^{\prime} and φ^{\prime} also satisfy (\dagger), then show that $\mu^{\prime} \ll \mu$, and that $\frac{d \mu^{\prime}}{d \mu}=1$ a.e. Also note that if φ^{\prime} is unimodular and $E \in \mathfrak{M}$, then $E=\bigcup_{i=1}^{4} E_{i}$ where $E_{1}=\left\{x \in E: \operatorname{Re} \varphi^{\prime}>0\right\}, E_{2}=\left\{x \in E: \operatorname{Re} \varphi^{\prime}<0\right\}$, $E_{3}=\left\{x \in E: \operatorname{Im} \varphi^{\prime}>0\right\}$, and $E_{4}=\left\{x \in E: \operatorname{Im} \varphi^{\prime}<0\right\}$.)

Comment: the measure μ in question 1 is called the total variation of ν, and the usual notation is $|\nu|$. It is defined by different methods in your text: see chapter 6 . One can prove facts like $|\nu|(E) \geq|\nu(E)|$, although one doesn't always have $|\nu|(E)=|\nu(E)|$; this also proves that even classical notation can be unfortunate.

The remaining problems reprise some of the fundamental results about functions of a complex variable covered in elementary courses but not covered in chapter ten of our text [2]. Most of this material - with perhaps the exception of problem 6 - are part of the early chapters in basic texts such as Conway [1], Brown \& Churchill or Saff \& Snider. Feel free to sneak a peak.

Let Ω be a domain in \mathbf{C} and assume that $f: \Omega \rightarrow \mathbf{C}$ is a function. Of course, we can view Ω as an open subset of \mathbf{R}^{2} and define $u, v: \Omega \rightarrow \mathbf{R}$ by

$$
u(x, y):=\operatorname{Re}(f(x+i y)) \quad \text { and } \quad v(x, y)=\operatorname{Im}(f(x+i y))
$$

We say that the Cauchy-Riemann Equations hold at $z_{0}=x_{0}+i y_{0}$ if the partial derivatives of u and v exist at $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) . \tag{CR}
\end{equation*}
$$

We often abuse notation slightly, and say that (CR) amounts to $f_{y}\left(z_{0}\right)=i f_{x}\left(z_{0}\right)$. (Just to be specific, $f_{x}\left(x_{0}+i y_{0}\right):=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. $)$
2. Suppose that $f^{\prime}\left(z_{0}\right)$ exists. Show that

$$
\begin{equation*}
f_{x}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right) . \tag{1}
\end{equation*}
$$

Conclude that the Cauchy-Riemann equations hold at z_{0} whenever $f^{\prime}\left(z_{0}\right)$ exists. Verify (1) when $f(z)=z^{2}$. (Write $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{1}{h}(f(z+h)-f(z))$. If the limit exists, so does the limit when we let $h=x+i 0$ be real or $h=0+i y$ is purely imaginary.)
3. Suppose that Ω is a region in \mathbf{C}, and that $f \in H(\Omega)$. Show that if $f^{\prime}(z)=0$ for all $z \in \Omega$, then f is constant. (You can prove for yourself or use without proof that if $u: \Omega \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ is such that $u_{x}(x, y)=u_{y}(x, y)$ for all $(x, y) \in \Omega$ then u is constant - provided Ω is a region.)
4. Suppose that Ω is a region and $f \in H(\Omega)$. Show that if f is real-valued in Ω, then f is constant.
5. Suppose that Ω is a region and $f \in H(\Omega)$. Suppose that $z \mapsto|f(z)|$ is constant on Ω. Show that f must be constant. (Consider $|f(z)|^{2}$.)

We let f, u, v and Ω be as above. Define

$$
F: \Omega \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \quad \text { by } \quad F(x, y)=(u(x, y), v(x, y))
$$

Pretend that you remember that F is differentiable at $\left(x_{0}, y_{0}\right) \in \Omega$ if there is a linear function $L: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-L(h, k)\right\|}{\|(h, k)\|}=0,
$$

in which case, the partials of u and v must exist and L is given by the Jacobian Matrix

$$
[L]=\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)
\end{array}\right) .
$$

(Of course, here $\|(x, y)\|=\sqrt{x^{2}+y^{2}}=|x+i y|$.)
6. Let f, F, u, v and Ω be as above. Let $z_{0}=x_{0}+i y_{0} \in \Omega$. Show that $f^{\prime}\left(z_{0}\right)$ exists if and only if the Cauchy-Riemann equations hold at z_{0} and F is differentiable at $\left(x_{0}, y_{0}\right)$. (Hint: if we let $z=h+i k$ and if T is given by the matrix

$$
[T]=\left(\begin{array}{rr}
u_{x}\left(x_{0}, y_{0}\right) & -v_{x}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & u_{x}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

then

$$
\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-T(h, k)\right\|=\left|f\left(z+z_{0}\right)-f\left(z_{0}\right)-\omega z\right|,
$$

where $\omega=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(z_{0}\right)$. Then remember (1).)
Problem \#6 has an important Corollary. We learn in multivariable calculus, that F is differentiable at $\left(x_{0}, y_{0}\right)$ if the partial derivatives of u and v exist in a neighborhood of $\left(x_{0}, y_{0}\right)$ and are continuous at $\left(x_{0}, y_{0}\right)$. Hence we get as a Corollary of problem $\# 6$, with f, u and v defined as above, that if u and v have continuous partial derivatives in a neighborhood of $\left(x_{0}, y_{0}\right)$ and if the Cauchy-Riemann equations hold at z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists. Use this observation in problem \#7.
7. Define exp : $\mathbf{C} \rightarrow \mathbf{C}$ by $\exp (x+i y)=e^{x}(\cos (y)+i \sin (y))$. Show that $\exp \in H(\mathbf{C})$ and $\exp ^{\prime}(z)=\exp (z)$ for all $z \in \mathbf{C}$.

If Ω is open in \mathbf{C} or \mathbf{R}^{2}, then we say $u: \Omega \rightarrow \mathbf{R}$ is harmonic if it has continuous second partial derivatives and if it is a solution to Laplace's equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{L}
\end{equation*}
$$

8. Suppose that $f \in H(\Omega)$. Let $u(x, y)=\operatorname{Re}(f(x+i y))$. Assuming u has continuous second partials, show that u is harmonic in Ω.
9. Suppose that $u: \Omega \rightarrow \mathbf{R}$ is harmonic. We say $v: \Omega \rightarrow \mathbf{R}$ is a harmonic conjugate for u if $f(x+i y)=u(x, y)+i v(x, y)$ defines a holomorphic function on Ω. Find all harmonic conjugates for $u(x, y)=2 x y$.

For the purposes of this assignment only, we'll call a region Ω a $S C$ region if every $f \in H(\Omega)$ has an antiderivative in Ω. For example, we have shown in lecture that every convex region is a SC region. Later, I hope that we'll see that any simply connected region is a SC region. In fact, a region is a SC-region if and only if it is simply connected.
10. Suppose that Ω is a SC region and that u is harmonic in Ω. Show that u has a harmonic conjugate in Ω. (Hint: we need to find a function $f \in H(\Omega)$ such that $u=\operatorname{Re}(f)$. However, consider $g=u_{x}-i u_{y}$. Show that $g \in H(\Omega)$ and consider an anti-derivative f for g in Ω. As in problem 3, you may use without proof the fact that if $w: \Omega \rightarrow \mathbf{R}$ is continuous and $w_{x} \equiv 0 \equiv w_{y}$ in Ω, then w is constant.)

If $u=\operatorname{Re}(f)$, then $u_{x}=\operatorname{Re}\left(f^{\prime}\right)$ and $u_{y}=\operatorname{Re}\left(-i f^{\prime}\right)$. Thus, it is a consequence of question $\# 10$ (and the deep result that $f \in H(\Omega)$ implies f is analytic) that every harmonic function has continuous partial derivatives of all orders.
11. Just as in question $\# 7$, we'll be fancy and write $\exp (z)$ in place of e^{z}. Suppose that Ω is a SC region and that $0 \notin \Omega$. Then show there is a $f \in H(\Omega)$ such that

$$
\exp (f(z))=z
$$

We call f a branch of $\log (z)$ in Ω. (Hint: start by letting f be an antiderivative of $1 / z$. and recall that $\exp (z)=a$ has infinitely many solutions for all $a \neq 0$.)
12. Show that $f(z)=1 / z$ can't have an antiderivative in the punctured complex plane $\mathbf{C}^{*}:=\mathbf{C} \backslash\{0\}$. Conclude that there is no (holomorphic) branch of $\log z$ in \mathbf{C}^{*}.

References

[1] John B. Conway, Functions of one complex variable, Second, Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York, 1978. MR503901 (80c:30003)
[2] Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1987.

