Math 73/103 Assignment Four Due Date TBA

- 1. Let ν be a complex measure on (X,\mathfrak{M}) .
 - (a) Show that there is a measure μ and a measurable function $\varphi: X \to \mathbf{C}$ so that $|\varphi| = 1$, and such that for all $E \in \mathfrak{M}$,

$$\nu(E) = \int_{E} \varphi \, d\mu. \tag{\dagger}$$

(Hint: write $\nu = \nu_1 - \nu_2 + i(\nu_3 - \nu_4)$ for measures ν_i . Put $\mu_0 = \nu_1 + \nu_2 + \nu_3 + \nu_4$. Then μ_0 will satisfy (†) provided we don't require $|\varphi| = 1$. You can then use without proof the fact that any complex-valued measurable function h can be written as $h = \varphi \cdot |h|$ with φ unimodular and measurable.)

(b) [Optional: Do not turn in] Show that the measure μ above is unique, and that φ is determined almost everywhere $[\mu]$. (Hint: if μ' and φ' also satisfy (†), then show that $\mu' \ll \mu$, and that $\frac{d\mu'}{d\mu} = 1$ a.e. Also note that if φ' is unimodular and $E \in \mathfrak{M}$, then $E = \bigcup_{i=1}^4 E_i$ where $E_1 = \{x \in E : \operatorname{Re} \varphi' > 0\}$, $E_2 = \{x \in E : \operatorname{Re} \varphi' < 0\}$, $E_3 = \{x \in E : \operatorname{Im} \varphi' > 0\}$, and $E_4 = \{x \in E : \operatorname{Im} \varphi' < 0\}$.)

Comment: the measure μ in question 1 is called the *total variation* of ν , and the usual notation is $|\nu|$. It is defined by different methods in your text: see chapter 6. One can prove facts like $|\nu|(E) \geq |\nu(E)|$, although one doesn't always have $|\nu|(E) = |\nu(E)|$; this also proves that even classical notation can be unfortunate.

The remaining problems reprise some of the fundamental results about functions of a complex variable covered in elementary courses but not covered in chapter ten of our text [2]. Most of this material — with perhaps the exception of problem 6 — are part of the early chapters in basic texts such as Conway [1], Brown & Churchill or Saff & Snider. Feel free to sneak a peak.

Let Ω be a domain in \mathbf{C} and assume that $f:\Omega\to\mathbf{C}$ is a function. Of course, we can view Ω as an open subset of \mathbf{R}^2 and define $u,v:\Omega\to\mathbf{R}$ by

$$u(x,y) := \operatorname{Re}(f(x+iy))$$
 and $v(x,y) = \operatorname{Im}(f(x+iy))$

We say that the Cauchy-Riemann Equations hold at $z_0 = x_0 + iy_0$ if the partial derivatives of u and v exist at (x_0, y_0) and

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 and $u_y(x_0, y_0) = -v_x(x_0, y_0)$. (CR)

We often abuse notation slightly, and say that (CR) amounts to $f_y(z_0) = i f_x(z_0)$. (Just to be specific, $f_x(x_0 + iy_0) := u_x(x_0, y_0) + i v_x(x_0, y_0)$.)

2. Suppose that $f'(z_0)$ exists. Show that

$$f_x(z_0) = f'(z_0) = -if_y(z_0).$$
 (1)

Conclude that the Cauchy-Riemann equations hold at z_0 whenever $f'(z_0)$ exists. Verify (1) when $f(z) = z^2$. (Write $f'(z) = \lim_{h\to 0} \frac{1}{h} (f(z+h) - f(z))$. If the limit exists, so does the limit when we let h = x + i0 be real or h = 0 + iy is purely imaginary.)

- 3. Suppose that Ω is a region in \mathbb{C} , and that $f \in H(\Omega)$. Show that if f'(z) = 0 for all $z \in \Omega$, then f is constant. (You can prove for yourself or use without proof that if $u : \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ is such that $u_x(x,y) = u_y(x,y)$ for all $(x,y) \in \Omega$ then u is constant provided Ω is a region.)
- 4. Suppose that Ω is a region and $f \in H(\Omega)$. Show that if f is real-valued in Ω , then f is constant.
- 5. Suppose that Ω is a region and $f \in H(\Omega)$. Suppose that $z \mapsto |f(z)|$ is constant on Ω . Show that f must be constant. (Consider $|f(z)|^2$.)

We let f, u, v and Ω be as above. Define

$$F: \Omega \subset \mathbf{R}^2 \to \mathbf{R}^2$$
 by $F(x,y) = (u(x,y), v(x,y)).$

Pretend that you remember that F is differentiable at $(x_0, y_0) \in \Omega$ if there is a linear function $L: \mathbf{R}^2 \to \mathbf{R}^2$ such that

$$\lim_{(h,k)\to(0,0)} \frac{\|F(x_0+h,y_0+k)-F(x_0,y_0)-L(h,k)\|}{\|(h,k)\|} = 0,$$

in which case, the partials of u and v must exist and L is given by the Jacobian Matrix

$$[L] = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}.$$

(Of course, here $||(x,y)|| = \sqrt{x^2 + y^2} = |x + iy|$.)

6. Let f, F, u, v and Ω be as above. Let $z_0 = x_0 + iy_0 \in \Omega$. Show that $f'(z_0)$ exists if and only if the Cauchy-Riemann equations hold at z_0 and F is differentiable at (x_0, y_0) . (Hint: if we let z = h + ik and if T is given by the matrix

$$[T] = \begin{pmatrix} u_x(x_0, y_0) & -v_x(x_0, y_0) \\ v_x(x_0, y_0) & u_x(x_0, y_0) \end{pmatrix},$$

then

$$||F(x_0 + h, y_0 + k) - F(x_0, y_0) - T(h, k)|| = |f(z + z_0) - f(z_0) - \omega z|,$$

where $\omega = u_x(x_0, y_0) + iv_x(x_0, y_0) = f_x(z_0)$. Then remember (1).)

Problem #6 has an important Corollary. We learn in multivariable calculus, that F is differentiable at (x_0, y_0) if the partial derivatives of u and v exist in a neighborhood of (x_0, y_0) and are continuous at (x_0, y_0) . Hence we get as a Corollary of problem #6, with f, u and v defined as above, that if u and v have continuous partial derivatives in a neighborhood of (x_0, y_0) and if the Cauchy-Riemann equations hold at z_0 , then $f'(z_0)$ exists. Use this observation in problem #7.

7. Define $\exp: \mathbf{C} \to \mathbf{C}$ by $\exp(x + iy) = e^x(\cos(y) + i\sin(y))$. Show that $\exp\in H(\mathbf{C})$ and $\exp'(z) = \exp(z)$ for all $z \in \mathbf{C}$.

If Ω is open in \mathbb{C} or \mathbb{R}^2 , then we say $u:\Omega\to\mathbb{R}$ is *harmonic* if it has continuous second partial derivatives and if it is a solution to Laplace's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. {(L)}$$

- 8. Suppose that $f \in H(\Omega)$. Let u(x,y) = Re(f(x+iy)). Assuming u has continuous second partials, show that u is harmonic in Ω .
- 9. Suppose that $u: \Omega \to \mathbf{R}$ is harmonic. We say $v: \Omega \to \mathbf{R}$ is a harmonic conjugate for u if f(x+iy) = u(x,y) + iv(x,y) defines a holomorphic function on Ω . Find all harmonic conjugates for u(x,y) = 2xy.

For the purposes of this assignment only, we'll call a region Ω a SC region if every $f \in H(\Omega)$ has an antiderivative in Ω . For example, we have shown in lecture that every convex region is a SC region. Later, I hope that we'll see that any simply connected region is a SC region. In fact, a region is a SC-region if and only if it is simply connected.

10. Suppose that Ω is a SC region and that u is harmonic in Ω . Show that u has a harmonic conjugate in Ω . (Hint: we need to find a function $f \in H(\Omega)$ such that u = Re(f). However, consider $g = u_x - iu_y$. Show that $g \in H(\Omega)$ and consider an anti-derivative f for g in Ω . As in problem 3, you may use without proof the fact that if $w : \Omega \to \mathbf{R}$ is continuous and $w_x \equiv 0 \equiv w_y$ in Ω , then w is constant.)

If u = Re(f), then $u_x = \text{Re}(f')$ and $u_y = \text{Re}(-if')$. Thus, it is a consequence of question #10 (and the deep result that $f \in H(\Omega)$ implies f is analytic) that every harmonic function has continuous partial derivatives of all orders.

11. Just as in question #7, we'll be fancy and write $\exp(z)$ in place of e^z . Suppose that Ω is a SC region and that $0 \notin \Omega$. Then show there is a $f \in H(\Omega)$ such that

$$\exp(f(z)) = z.$$

We call f a branch of $\log(z)$ in Ω . (Hint: start by letting f be an antiderivative of 1/z. and recall that $\exp(z) = a$ has infinitely many solutions for all $a \neq 0$.)

12. Show that f(z) = 1/z can't have an antiderivative in the punctured complex plane $\mathbb{C}^* := \mathbb{C} \setminus \{0\}$. Conclude that there is no (holomorphic) branch of $\log z$ in \mathbb{C}^* .

References

- [1] John B. Conway, Functions of one complex variable, Second, Graduate Texts in Mathematics, vol. 11, Springer-Verlag, New York, 1978. MR503901 (80c:30003)
- [2] Walter Rudin, Real and complex analysis, McGraw-Hill, New York, 1987.