
Math 73/103 Assignment Three

Due Date TBA

Clarification: Let’s review of notation and terminology. Lebesgue measure, (R,M,m),
is the complete measure coming from the explicit outer measure m∗ we defined in lecture. In
particular, M is the σ-algebra of all m∗-measurable sets. A Lebesgue measurable function
f : R → C is just a function such that f−1(V ) ∈ M for any open set V ⊂ C. We say f
is Borel if f−1(V ) is a Borel set in R for every open set V . We say f ∈ L1(R,M,m), or
that f is Lebesgue integrable, if f is measurable and

∫

R
|f | dm < ∞. We have also used the

notation L+(R,M,m) for the collection Lebesgue measurable functions f such that f ≥ 0
everywhere.

1. Suppose that f ∈ L1(X,M,m) is a Lebesgue integrable function on the real line. Let
ǫ > 0. Show that there is a continuous function g that vanishes outside a bounded interval
such that ‖f − g‖1 < ǫ. (Hint: this is easy if f is the characteristic function of a bounded
interval: draw a picture.)

Another of Littlewood’s Principles is that a pointwise convergent sequence of functions
is nearly uniformly convergent. This is also known as “Egoroff’s Theorem”.

2. Prove Egoroff’s Theorem: Suppose that (X,M, µ) is a finite measure space — that is,
µ(X) < ∞. Suppose that {fn} is a sequence of measurable functions converging pointwise
to a measurable function f : X → C. Then for all ǫ > 0 there is a set E ∈ M such that
µ(X \ E) < ǫ and fn → f uniformly on E.

Some suggestions:

(a) There is no harm in assuming that fn → f everywhere.

(b) Let En(k) =
⋃∞

m=n
{x ∈ X : |fm(x)− f(x)| ≥ 1

k
}.

(c) Show that limn→∞ µ(En(k)) = 0. (You need µ(X) < ∞ here.)

(d) Fix ǫ > 0 and k. Choose nk ≥ n so that µ(Enk
(k)) < ǫ

2−k , and let

E =
∞
⋃

k=1

Enk
(k).
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Fortunately, Littlewood only had three principles. The final one is that every measurable
function is nearly continuous. This is known as “Lusin’s Theorem”.

3. Prove Lusin’s Theorem: Suppose that f is a Lebesgue measurable function on [a, b] ⊂ R.
Given ǫ > 0, show that there is a closed subset K ⊂ [a, b] such that m([a, b] \K) < ǫ and
that f |K is continuous. (Suggestion use problem 1, Egoroff’s Theorem and that fact that
the uniform limit of continuous functions is continuous.)

4. Recall that a sequence {fn} of measurable functions from (X,M) to C converges in
measure to a measurable function f : X → C if for all ǫ > 0 we have limn→∞ µ

(

En(ǫ)
)

= 0
where

En(ǫ) = {x ∈ X : |fn(x)− f(x)| ≥ ǫ }.

Show that, as claimed in lecture, if {fn} converges to f in measure then {fn} has a subse-
quence {fnk

} which converges to f almost everywhere.
Some suggestions:

(a) Let nk be such that n ≥ nk implies µ(En(2
−k)) < 2−k.

(b) Let Ek = Enk
(2−k) and Gk =

⋃

m≥k
Em.

(c) Show that fnk
(x) → f(x) if x /∈ A :=

⋂∞

k=1
Gk.

5. Suppose that ρ is a premeasure on an algebra A of sets in X. Let ρ∗ be the associated
outer measure.

(a) Show that ρ∗(E) = ρ(E) for all E ∈ A.

(b) If M∗ is the σ-algebra of ρ∗-measurable sets, show that A ⊂ M
∗.

6. Let m be Lebesgue measure on [0, 1] and let µ be counting measure. Clearly, m << µ.
Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem.
Why is this not a counter-example to the Radon-Nikodym Theorem.

7. Suppose that fn → f in measure and that there is a g ∈ L1(X,M, µ) is such that
|fn(x)| ≤ g(x) for all x ∈ X. Show that fn → f in L1(X,M, µ).
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8. [Optional: Do NOT turn in] Suppose that f : [a, b] → R is a bounded function. We want
to show that f is Riemann integrable if and only if

m
(

{x ∈ [a, b] : f is not continuous at x }
)

= 0.

In [1, Theorem 2.28], Folland suggests the following strategy. Let

H(x) = lim
δ→0

(

sup{ f(y) : |y − x| ≤ δ }
)

and h(x) = lim
δ→0

inf{ f(y) : |y − x| ≤ δ }.

(a) Show that f is continuous at x if and only if H(x) = h(x).

(b) In the notation of our proof in lecture that Riemann integral functions are Lebesgue
integrable, show that h = ℓ almost everywhere and H = u almost everywhere.

(c) Conclude that
∫

b

a
h dm = R

∫

b

a
f and

∫

b

a
H dm = R

∫ b

a
f .
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