How Many Borel Sets are There?

Object. This series of exercises is designed to lead to the conclusion that if $\mathcal{B}_{\mathbf{R}}$ is the σ algebra of Borel sets in \mathbf{R}, then

$$
\operatorname{Card}\left(\mathcal{B}_{\mathbf{R}}\right)=\mathfrak{c}:=\operatorname{Card}(\mathbf{R}) .
$$

This is the conclusion of problem 4. As a bonus, we also get some insight into the "structure" of $\mathcal{B}_{\mathbf{R}}$ via problem 2. This just scratches the surface. If you still have an itch after all this, you want to talk to a set theorist. This treatment is based on the discussion surrounding [1, Proposition 1.23] and [2, Chap. V §10 \#31].

For these problems, you will need to know a bit about well-ordered sets and transfinite induction. I suggest $[1, \S 0.4]$ where transfinite induction is [1, Proposition 0.15$]$. Note that by [1, Proposition 0.18], there is an uncountable well ordered set Ω such that for all $x \in \Omega$, $I_{x}:=\{y \in \Omega: y<x\}$ is countable. The elements of Ω are called the countable ordinals. We let $1:=\inf \Omega$. If $x \in \Omega$, then $x+1:=\inf \{y \in \Omega: y>x\}$ is called the immediate successor of x. If there is a $z \in \Omega$ such that $z+1=x$, then z is called the immediate predecessor of x. If x has no immediate predecessor, then x is called a limit ordinal. ${ }^{1}$

1. Show that $\operatorname{Card}(\Omega) \leq \mathfrak{c}$. (This follows from [1, Propositions 0.17 and 0.18$]$. Alternatively, you can use transfinite induction to construct an injective function $f: \Omega \rightarrow \mathbf{R}$.) ${ }^{2}$
2. If X is a set, let $\mathscr{P}(X)$ be the set of subsets of X - i.e., $\mathscr{P}(X)$ is the power set of X. Let $\mathscr{E} \subset \mathscr{P}(X)$. The object of this problem is to give a "concrete" description of the σ-algebra $\mathscr{M}(\mathscr{E})$ generated by \mathscr{E}. (Of course, we are aiming at describing the Borel sets in \mathbf{R} which are generated by the collection \mathscr{E} of open intervals.) For convenience, we assume that $\emptyset \in \mathscr{E}$.

Let

$$
\mathscr{E}^{c}:=\left\{E^{c}: E \in \mathscr{E}\right\} \quad \text { and } \quad \mathscr{E}_{\sigma}=\left\{\bigcup_{i=1}^{\infty} E_{i}: E_{i} \in \mathscr{E}\right\}
$$

(Note, I just mean that \mathscr{E}_{σ} is the set of sets formed from countable unions of elements of \mathscr{E}. Since $\emptyset \in \mathscr{E}, \mathscr{E} \subset \mathscr{E}_{\sigma}$.)

[^0]We let $\mathscr{F}_{1}:=\mathscr{E} \cup \mathscr{E}^{c}$. If $x \in \Omega$, and if x has an immediate predecessor y, then we set

$$
\mathscr{F}_{x}:=\left(\mathscr{F}_{y}\right)_{\sigma} \cup\left(\left(\mathscr{F}_{y}\right)_{\sigma}\right)^{c} .
$$

If x is a limit ordinal, then we set

$$
\mathscr{F}_{x}:=\bigcup_{y<x} \mathscr{F}_{y} .
$$

We aim to show that

$$
\mathscr{M}(\mathscr{E})=\bigcup_{x \in \Omega} \mathscr{F}_{x}
$$

(a) Observe that $\mathscr{F}_{1} \subset \mathscr{M}(\mathscr{E})$.
(b) Show that if $F_{y} \subset \mathscr{M}(\mathscr{E})$ for all $y<x$, then $F_{x} \subset \mathscr{M}(\mathscr{E})$. Then use transfinite induction to conclude that $\mathscr{F}_{x} \subset \mathscr{M}(\mathscr{E})$ for all $x \in \Omega$.
(c) Show that the right-hand side of (\dagger) is closed under countable unions.
(d) Conclude that $\bigcup_{x \in \Omega} \mathscr{F}_{x}$ is a σ-algebra, and that (\dagger) holds.
3. Recall that if A and B are sets, then $\prod_{a \in A} B$ is simply the set of functions from A to B. For reasons that are unclear to me, this set is usually written B^{A}. Notice that $\prod_{i=1}^{\infty} B=\prod_{i \in \mathbf{N}} B$ is just the collection of sequences in B. Notice also that $\operatorname{Card}\left(B^{A}\right)$ depends only on $\operatorname{Card}(A)$ and $\operatorname{Card}(B)$.
(a) Check that

$$
\begin{equation*}
\prod_{i=1}^{\infty}\left(\prod_{j=1}^{\infty} B\right)=\prod_{(i, j) \in \mathbf{N} \times \mathbf{N}} B . \tag{*}
\end{equation*}
$$

Thus the cardinality of either side of $(*)$ is the same as $\prod_{i=1}^{\infty} B$.
(b) Use these observations together with the fact that $\operatorname{Card}\left(\prod_{i=1}^{\infty}\{0,1\}\right)=\mathfrak{c}:=\operatorname{Card}(\mathbf{R})$ (which follows from [1, Proposition 0.12]) to show that

$$
\operatorname{Card}\left(\prod_{i=1}^{\infty} \mathbf{R}\right)=\mathbf{c}
$$

(c) Show that if $\operatorname{Card}(\mathscr{E})=\mathfrak{c}$, then $\operatorname{Card}\left(\mathscr{E}_{\sigma}\right)=\mathfrak{c}$.
4. Let $\mathcal{B}_{\mathbf{R}}$ be the σ-algebra of Borel sets in \mathbf{R}. In [1, Proposition 0.14(b)], it is shown that if $\operatorname{Card}(A) \leq \mathfrak{c}$ and if $\operatorname{Card}\left(Y_{x}\right) \leq \mathfrak{c}$ for all $x \in A$, then $\bigcup_{x \in A} Y_{x}$ has cardinality bounded by c. By following the given steps, use this observation, as well as problems 2 and 3 , to show that

$$
\operatorname{Card}\left(\mathcal{B}_{\mathbf{R}}\right)=\mathfrak{c} .
$$

(a) Let \mathscr{E} be the collection of open intervals (including the empty set) in \mathbf{R}. Then $\operatorname{Card}(\mathscr{E})=\mathfrak{c}$.
(b) $\mathcal{B}_{\mathbf{R}}=\mathscr{M}(\mathscr{E})$.
(c) Define \mathscr{F}_{x} as in problem 2. Use transfinite induction and problem 3 to prove that $\operatorname{Card}\left(F_{x}\right)=\mathfrak{c}$ for all $x \in \Omega$.
(d) Use problem 2 to conclude that $\mathscr{M}(\mathscr{E})=\mathcal{B}_{\mathbf{R}}$ has the cardinality claimed in $(\ddagger) .{ }^{4}$

References

[1] Gerald B. Folland, Real analysis, Second, John Wiley \& Sons Inc., New York, 1999. Modern techniques and their applications, A Wiley-Interscience Publication.
[2] Anthony W. Knapp, Basic real analysis, Cornerstones, Birkhäuser Boston Inc., Boston, MA, 2005. Along with a companion volume Advanced real analysis.

[^1]
[^0]: ${ }^{1}$ The set of countable ordinals has a rich structure. We let $2:=1+1$, and so on. The set $\{n \in \mathbf{N}\} \subset \Omega$ is countable, and so has a supremum ω (see [1, Proposition 0.19]). Then there are ordinals $\omega+1, \omega+2, \ldots$, $2 \omega, 2 \omega+1, \ldots, \omega^{2}, \omega^{2}+1, \ldots, \omega^{\omega}$, and so on.
 ${ }^{2}$ The issue of whether or not $\operatorname{Card}(\Omega)=\mathfrak{c}$ is the continuium hypothesis, and so is independent of the usual (ZFC) axioms of set theory.

[^1]: ${ }^{4}$ It is my understanding that the classes \mathscr{F}_{x} are all distinct; that is, $\mathscr{F}_{x} \subsetneq \mathscr{F}_{y}$ if $x<y$ in Ω. But I don't have a reference or a proof at hand.

