Mathematics 101 Fall 2014 Homework 8 (not to hand in)

- 1. Let p be an odd prime, $n \geq 2$, and let $G = GL_n(\mathbb{F}_p)$, where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the field with p elements.
 - (a) Determine the size of G and via the first isomorphism theorem, deduce the order of the subgroup $H = SL_n(\mathbb{F}_p)$.
 - (b) Show that $GL_n(\mathbb{F}_p)$ is a split extension of $SL_n(\mathbb{F}_p)$ by \mathbb{F}_p^{\times} .
 - (c) Show that every Sylow p-subgroup of G is also a Sylow p-subgroup of H.
 - (d) Now restrict n to be n = 2 or n = 3. For each case exhibit a Sylow p subgroup. *Hint:* If the Sylow subgroups have size p^m , then every element of a Sylow psubgroup in annihilated by the polynomial $x^{p^m} - 1 \in \mathbb{F}_p[x]$. Note that you are in characteristic p, and you are dealing with matrices, so perhaps a little linear algebra might apply.
 - (e) For each of n = 2, 3 determine how many Sylow *p*-subgroups there are in $GL_n(\mathbb{F}_p)$.
- 2. Semidirect products. We showed in class that $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times}$.
 - (a) Suppose that H_1 , H_2 and K are groups, $\sigma : H_1 \to H_2$ is an isomorphism, and $\psi : H_2 \to Aut(K)$ a homomorphism, so that $\varphi = \psi \circ \sigma : H_1 \to Aut(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_1 \cong K \rtimes_{\psi} H_2$.
 - (b) Suppose that H and K are groups and $\varphi, \psi : H \to Aut(K)$ are monomorphisms with the same image in Aut(K). Show that there exists a $\sigma \in Aut(H)$ such that $\psi = \varphi \circ \sigma$.
 - (c) Suppose that H and K are groups, $\varphi, \psi : H \to Aut(K)$ are monomorphisms, and Aut(K) is finite and cyclic. Show that φ and ψ have the same image in Aut(K).
 - (d) Let p < q be primes with $p \mid (q-1)$. Let H and K be cyclic groups of order p and q respectively. Let $\varphi, \psi: H \to Aut(K)$ be nontrivial homomorphisms. Observing that Aut(K) is cyclic, show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
 - (e) Let p < q be primes. Show that up to isomorphism, there are at most two groups of order pq.
- 3. Let *H* be a group, and by H^n denote group which is the external direct product of *H* with itself *n* times. Show that the symmetric group S_n acts on H^n via $(\sigma, (h_1, \ldots, h_n)) \mapsto (h_{\sigma^{-1}(1)}, \ldots, h_{\sigma^{-1}(n)})$. Note that the obvious map $(\sigma, (h_1, \ldots, h_n)) \mapsto (h_{\sigma(1)}, \ldots, h_{\sigma(n)})$ is a right action, that is you need the inverses so that the permutation representation is a homomorphism.

Hint: This is a bit subtle with notation; you may find the following observation useful. In set theory, Y^X denotes the set of functions $f: X \to Y$, so one can interpret H^n as H^X where $X = \{1, 2, ..., n\}$. Now show that the natural action of S_n on X induces an action of S_n on $H^X \cong H^n$ as suggested above.

4. Let A, B be groups and let |B| = n. We know that B acting on itself by left translation induces an injective homomorphism $\rho : B \to S_n$; this permutation representation is usually called the *left regular representation*. As we saw in the previous problem, S_n acts on A^n with permutation representation $\varphi : S_n \to Aut(A^n)$. The composition of φ and ρ , is a homomorphism $\varphi \circ \rho : B \to Aut(A^n)$. The wreath product of A by B, denoted $A \wr B$, is defined to be the semidirect product $A \wr B = A^n \rtimes_{\varphi \circ \rho} B$.

Show (obvious) that the order of $A \wr B$ is $|A|^{|B|} \cdot |B|$. From this it is clear that $\mathbb{Z}_2 \wr \mathbb{Z}_2$ is a group of order 8. Determine its isomorphism class in part by writing out all eight elements and finding their orders.

- 5. The point of this exercise is to show that for p a prime, any Sylow p-subgroup of S_{p^2} is isomorphic to $\mathbb{Z}_p \wr \mathbb{Z}_p$.
 - (a) First compute the cardinality of a Sylow *p*-subgroup of S_{p^2} (without assuming the isomorphism).
 - (b) The following is outline of a proof is from Rotman's Theory of Groups, where a more general result is established. Let $B_0 = \{1, 2, ..., p\}$ and let $B_i = B_0 + ip$, so that the set $\{1, 2, ..., p^2\}$ is the disjoint union $B_0 \cup \cdots \cup B_{p-1}$. Consider the permutation $\sigma \in S_{p^2}$ which for $b_0 \in B_0$ takes

$$\sigma(b_0 + ip) = \begin{cases} b_0 + (i+1)p & \text{if } i < p-1, \\ b_0 & \text{if } i = p-1. \end{cases}$$

Verify that $B_{i+1} = \sigma(B_i)$ (with the subscripts read modulo p), and that σ has order p.

- (c) Let $H = H_0$ denote a Sylow *p*-subgroup of S_p ; observe that it is cyclic of order *p*. Viewing H_0 also a subgroup of S_{p^2} , let H_1 be the image of H_0 under the action of σ ; so for example the cycle $(1 \ 2 \ 3 \dots p)$ would go to $(p + 1 \ p + 2 \dots 2p)$. Now let $H_{i+1} = \sigma(H_i)$. Show that S_{p^2} contains a subgroup $K = H_0 \cdots H_{p-1} \cong H_0 \times \cdots \times H_{p-1} \cong H^p$. Hint: Disjoint permutations commute.
- (d) Show that $K \cap \langle \sigma \rangle = \{e\}$.
- (e) Now the tricky bit. Rotman wants you to show first that conjugating by σ maps from $H_0 \times \cdots \times H_{p-1}$ to $H_1 \times H_2 \times \cdots \times H_{p-1} \times H_0$. That part is easy. Then he wants you to show that the induced action on $H^p = H_0^p$ is the one you need to identify $\langle K, \sigma \rangle$ as a wreath product. The subtlety is that $H^p \cong H_0 \times \cdots \times H_{p-1}$ and you need to chase through the identifications to verify his claim.
- (f) Conclude that $\langle K, \sigma \rangle \cong H \wr \langle \sigma \rangle \cong \mathbb{Z}_p \wr \mathbb{Z}_p$