Mathematics 101

Fall 2014
Homework 7
The first couple of problems regard towers of groups. By a normal tower of groups we mean a chain of subgroups

$$
G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r},
$$

that is, where each group G_{k} is normal in its successor, though not necessarily normal in G_{r}.
A group G is solvable if it admits an abelian tower ending in $\{e\}$, that is if there exist subgroups $G_{k} \leq G$ so that

$$
\{e\}=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r}=G,
$$

where each quotient G_{k} / G_{k-1} is an abelian group, $1 \leq k \leq r$.
A composition series for a group G (they always exist for finite groups) is a normal tower

$$
\{e\}=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r}=G,
$$

where each quotient G_{k} / G_{k-1} is a simple group, $1 \leq k \leq r$, where simple means having no non-trivial normal subgroups.

1. Let G be a group, and let G^{\prime} be the commutator subgroup of G, the group generated by the set $\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$.
(a) Show that if $H \leq G$, then $H \supseteq G^{\prime}$ if and only if $H \unlhd G$, and G / H is an abelian group. In particular $G^{\prime} \unlhd G$ is the smallest normal subgroup so that G / G^{\prime} is abelian.
(b) Show that any group homomorphism $\varphi: G \rightarrow H$ where H is abelian factors through the quotient G / G^{\prime}.
(c) Given a group G, define a sequence of subgroups $G^{(k)}$ by $G^{(1)}=G^{\prime}$, the commutator subgroup, and $G^{(k+1)}=\left[G^{(k)}\right]^{\prime}$, the commutator of $G^{(k)}$. Show that G is solvable if and only if $G^{(k)}=\{e\}$ for some $k \geq 1$.
2. Show that the following three statements concerning finite groups are equivalent. The second is the famous Feit-Thompson theorem.
(a) A finite non-abelian simple group has even order.
(b) A simple group of odd order is isomorphic to $\mathbb{Z} / p \mathbb{Z}$ for some prime p.
(c) Every group of odd order is solvable.
3. Let G be a finite group and $H \unlhd G$. Show that G has a composition series one of whose terms is H.
4. Group Actions.
(a) Let G be a finite group, and H a proper subgroup. Show that G is not the union of conjugates of H.
(b) Let $G=G L_{n}(\mathbb{C})$, and H the subgroup of lower triangular matrices. Show that G is the union of conjugates of H.
(c) Let $G=G L_{n}(\mathbb{R})$, and H the subgroup of lower triangular matrices. Determine whether or not G is the union of conjugates of H (proof or counterexample).
5. Let G be a non-abelian group of order p^{3}, p a prime. Show that the commutator of G equals its center.
6. Let $p<q$ be primes, and G a non-abelian group of order $p q$. Show that there is an embedding of G into the symmetric group S_{q}.
