Mathematics 101

Fall 2014
Homework 4

1. (\#27, 10.3) You will demonstrate that over a noncommutative ring, the notion of rank of a module is not well-defined.
Let $M=\prod_{n=1}^{\infty} \mathbb{Z}$ be the direct product of a countably infinite number of copies of \mathbb{Z}, and let $R=\operatorname{End}_{\mathbb{Z}}(M)$. Define $\varphi_{1}, \varphi_{2} \in R$ by

$$
\begin{aligned}
& \varphi_{1}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{3}, a_{5}, \ldots\right) \\
& \varphi_{2}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{4}, a_{6}, \ldots\right)
\end{aligned}
$$

(a) Prove that $\left\{\varphi_{1}, \varphi_{2}\right\}$ is a basis of the left R-module R. D $\mathcal{G} F$ hint: Define maps $\psi_{1}, \psi_{2} \in R$ by $\psi_{1}\left(a_{1}, a_{2}, \ldots\right)=\left(a_{1}, 0, a_{2}, 0, \ldots\right)$ and $\psi_{2}\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, 0, a_{2}, \ldots\right)$. Verify that $\varphi_{i} \psi_{i}=1, \varphi_{1} \psi_{2}=0=\varphi_{2} \psi_{1}$ and $\psi_{1} \varphi_{1}+\psi_{2} \varphi_{2}=1$. Use this to establish the result.
(b) Show that $R \cong R^{2}$, and deduce $R^{m} \cong R^{n}$ for any $m, n \geq 1$.
2. Let R be a ring with identity, and $\left\{M_{i}\right\}_{i \in I}$ a collection of left R-modules. For each direction of the statements below, provide a proof or a counterexample.
(a) $\oplus_{i \in I} M_{i}$ is free if and only if M_{i} is free for each $i \in I$.
(b) $\oplus_{i \in I} M_{i}$ is projective if and only if M_{i} is projective for each $i \in I$.
3. Let R be a commutative ring with identity, and $S \subset R$ a multiplicatively closed set containing $1,0 \notin S$, and let $i_{R}: R \rightarrow S^{-1} R$ be the ring homomorphism taking $r \mapsto r / 1$. For an ideal $I \subseteq R$ define $S^{-1} I=\{i / s \mid i \in I, s \in S\}$.
(a) Show that $S^{-1} I$ is an ideal in $S^{-1} R$ which is proper iff $I \cap S=\emptyset$. By example show that it is not the case that if $a / s \in S^{-1} I$ we must have $a \in I$.
(b) Show that every ideal $J \subset S^{-1} R$ is of the form $S^{-1} I$ for an ideal $I \subseteq R$.
(c) Show that there is a one-to-one correspondence between the prime ideals of $S^{-1} R$ and the prime ideals of R which are disjoint from S.
4. Let R be a commutative ring with identity, and $S \subset R$ a multiplicatively closed set containing $1,0 \notin S$.
(a) Show that S^{-1} is an exact functor, that is, given an exact sequence of left R modules

$$
L \xrightarrow{\varphi} M \xrightarrow{\psi} N
$$

show that

$$
S^{-1} L \xrightarrow{S^{-1} \varphi} S^{-1} M \xrightarrow{S^{-1} \psi} S^{-1} N
$$

is an exact sequence of $S^{-1} R$-modules.
(b) Show that for R-modules $A, B, S^{-1}(A \oplus B) \cong S^{-1} A \oplus S^{-1} B$ (as $S^{-1} R$-modules).
5. Let R be a commutative ring with identity, and \mathfrak{P} a prime ideal in R (a proper ideal with the property that $a b \in \mathfrak{P}$ implies $a \in \mathfrak{P}$ or $b \in \mathfrak{P})$. With $S=R \backslash \mathfrak{P}$, we call $S^{-1} R$ the localization of R at the prime ideal \mathfrak{P}, usually denoted $R_{\mathfrak{P}}$.
(a) Show that $R_{\mathfrak{P}}$ is a local ring, that is a ring containing a unique maximal ideal.
(b) Also in this context, when M is an R-module we usually denote $S^{-1} M$ by $M_{\mathfrak{F}}$. Show the following are equivalent:
i. $M=0$.
ii. $M_{\mathfrak{P}}=0$ for all prime ideals \mathfrak{P}.
iii. $M_{\mathfrak{M}}=0$ for all maximal ideals \mathfrak{M}. Hint: To show (iii) implies (i), suppose that $M \neq 0$ and choose $m \in M, m \neq 0$. Let $I=\{r \in R \mid r m=0$, the annihilator of m in R. It is a proper ideal (why?) hence contained in a maximal ideal, \mathfrak{M}. Now consider $m / 1 \in M_{\mathfrak{M}}$.
6. Let R be a commutative ring with identity, and let $\varphi: M \rightarrow N$ be an R-linear map.
(a) Show that the following are equivalent:
i. φ is injective.
ii. $\varphi_{\mathfrak{P}}\left(=S^{-1} \varphi\right): M_{\mathfrak{P}} \rightarrow N_{\mathfrak{P}}$ is injective for all prime ideals $\mathfrak{P} \subset R$.
iii. $\varphi_{\mathfrak{M}}\left(=S^{-1} \varphi\right): M_{\mathfrak{M}} \rightarrow N_{\mathfrak{M}}$ is injective for all maximal ideals $\mathfrak{M} \subset R$.

Remark: The analogous result is true if we replace injective by surjective.
(b) Show that if M is a projective module, then so is $M_{\mathfrak{P}}$ for all prime ideals \mathfrak{P}. The converse is also true, but we need just a bit more to prove it.

