Mathematics 101

Fall 2014
Homework 1

1. Let V be a finite dimensional vector space over a field k, and let $\varphi: V \rightarrow V$ be k-linear.
(a) Show that there is a positive integer m so that $\operatorname{Im}\left(\varphi^{m}\right) \cap \operatorname{ker}\left(\varphi^{m}\right)=\{0\}$.
(b) Now suppose that $\varphi^{2}=0$. Show that the rank of φ is at most $\operatorname{dim} V / 2$.
2. Let V be a finite dimensional vector space over a field k, and let $\varphi: V \rightarrow V$ be k-linear, and suppose that $\varphi^{2}=\varphi$, that is, φ is an idempotent map.
(a) Show that $V=\operatorname{ker}(\varphi) \oplus \operatorname{Im}(\varphi)$.
(b) Show that there is a basis of V so that the matrix with respect to this basis is diagonal all of whose entries are 0 or 1 .
3. Let V be an arbitrary vector space over field k, and φ a linear operator on V. Let W be a subspace which is invariant under φ. Consequently there are induced maps, $\left.\varphi\right|_{W}: W \rightarrow W$ and $\bar{\varphi}: V / W \rightarrow V / W$, the later defined by $\bar{\varphi}(v+W)=\varphi(v)+W$.
(a) Show that if $\left.\varphi\right|_{W}$ and $\bar{\varphi}$ are nonsingular (i.e., injective), then φ is nonsingular.
(b) Show that the converse holds if V has finite dimension, and find a counterexample with V infinite dimensional.
4. Let V be a vector space over a field k, and φ a linear operator on V. Suppose that $\lambda_{1}, \ldots, \lambda_{r}$ are distinct eigenvalues of φ. For an eigenvalue λ, denote by E_{λ} the corresponding eigenspace, i.e., $E_{\lambda}=\{v \in V \mid \varphi(v)=\lambda v\}$.
(a) Show that $\sum_{i=1}^{r} E_{\lambda_{i}}=\bigoplus_{i=1}^{r} E_{\lambda_{i}}$. Hint: It suffices to show that $E_{\lambda_{1}} \cap \sum_{i=2}^{r} E_{\lambda_{i}}=\{0\}$.
(b) Conclude that any linear transformation on a finite dimensional vector space has at most $\operatorname{dim}(V)$ distinct eigenvalues.
5. Let α, β, γ be nonzero real numbers, and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto the subspace $W=\{(x, y, z) \mid \alpha x+\beta y+\gamma z=0\}$. Find the matrix of T with respect to the standard ordered basis of \mathbb{R}^{3}. Hint: It would be productive to find the matrix of T with respect to a natural basis for the problem, and then use change of basis matrices to achieve the desired result.
6. Let k be a field and $P \in G L_{m}(k)$.
(a) Given a basis \mathcal{C} for k^{m}, show there is a unique basis \mathcal{B} so that $P={ }_{\mathcal{C}}[I d]_{\mathcal{B}}$.
(b) Given a basis \mathcal{B} for k^{m}, show there is a unique basis \mathcal{C} so that $P={ }_{\mathcal{C}}[I d]_{\mathcal{B}}$.
(c) Let A be an $m \times m$ matrix with entries from k. Show there are matrices $P, Q \in$ $G L_{m}(k)$ with $P A Q$ a diagonal matrix with zeros or ones on the diagonal.
7. Something similar is true over \mathbb{Z} as well. For $A \in M_{m}(\mathbb{Z})$, there exist $P, Q \in G L_{m}(\mathbb{Z})$ so that $P A Q=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ with $d_{1}\left|d_{2}\right| \cdots \mid d_{m}$. This is called the Smith Normal form of a matrix. Remember that multiplication by P and Q correspond to elementary row and column operations of the matrix. Use this observation to analyze the following situation.
Let M be the \mathbb{Z}-module \mathbb{Z}^{2} and N the submodule generated by $\binom{2}{4},\binom{8}{10}$. The quotient module M / N is a finitely generated abelian group; indeed in this case a finite abelian group. Write it as a product of cyclic groups. Hint: Define $\varphi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ by $\varphi\binom{0}{1}=\binom{2}{4}$, and $\varphi\binom{1}{0}=\binom{8}{10}$. Then $\operatorname{Im}(\varphi)=N$. Let $\mathcal{B}=\left\{e_{1}=\binom{0}{1}, e_{2}=\binom{1}{0}\right\}, \mathcal{C}=\left\{f_{1}=\right.$ $\left.\binom{0}{1}, f_{2}=\binom{1}{0}\right\}$ be the standard ordered basis of \mathbb{Z}^{2} (one for the domain, the other for the codomain). Then $\mathcal{C}_{\mathcal{C}}[\varphi]_{\mathcal{B}}=\left(\begin{array}{ll}2 & 8 \\ 4 & 10\end{array}\right)$. Now consider how changing the bases in domain and codomain affect $\operatorname{Im}(\varphi)$.
