Dartmouth College

Mathematics 101

Homework 7 (due Thursday, Nov 19)

- 1. Let $A = \mathbb{Z}$ and $\mathfrak{p} = p\mathbb{Z}$ with p a prime in \mathbb{Z} . We have characterized the localization $A_{\mathfrak{p}} = \mathbb{Z}_{\mathfrak{p}}$ as $\{a/b \in \mathbb{Q} \mid a, b \in \mathbb{Z}, \ p \nmid b, \ \gcd(a, b) = 1\}$.
 - (a) Show that every nonzero element in $\mathbb{Z}_{\mathfrak{p}}$ can be written uniquely as $p^{\nu}u$ where ν is a nonnegative integer and $u \in \mathbb{Z}_{\mathfrak{p}}^{\times}$. You may of course assume unique factorization in \mathbb{Z} .
 - (b) Characterize all the ideals of $\mathbb{Z}_{\mathfrak{p}}$, and confirm that $\mathbb{Z}_{\mathfrak{p}}$ has a unique maximal ideal.
 - (c) Show that $\mathbb{Z}_{\mathfrak{p}}/p\mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z}/p\mathbb{Z}$.
- 2. Let A be a commutative ring with identity.
 - (a) Suppose that for each prime ideal \mathfrak{P} in A, the local ring $A_{\mathfrak{P}}$ has no nonzero nilpotent elements. Show that A has no nonzero nilpotent elements. Hint: Show that for an element $x \in A$, the set $Ann(x) = \{y \in A \mid yx = 0\}$ is an ideal of A. Ann(x) is called the annihilator of the element x.
 - (b) Proof or counterexample: If for each prime \mathfrak{P} of A, each localization $A_{\mathfrak{P}}$ is an integral domain, then A is an integral domain.
- 3. Let A be an integral domain, $S \subsetneq A$ a multiplicative subset containing 1 (but not containing 0).
 - (a) Show that $S^{-1}A$ is an integral domain.
 - (b) Show that if A is a PID (every ideal is principal), so is $S^{-1}A$.
- 4. Consider the localization of $\mathbb{Z}[x]$ at the prime ideal (x).
 - (a) Describe the elements of $\mathbb{Z}[x]_{(x)}$.
 - (b) Is (x) maximal in $\mathbb{Z}[x]_{(x)}$? If so, describe the resulting quotient field.
 - (c) How does $\mathbb{Z}[x]_{(x)}$ compare to $\mathbb{Q}[x]_{(x)}$?
- 5. Let A be a commutative ring with identity, and let X be the set of all prime ideals in A. X is called the prime spectrum of A, written Spec(A). For each subset $E \subseteq A$, let V(E) denote the set of primes ideals of A which contain E. The properties below

demonstrate that the sets V(E) satisfy the axioms for closed sets in a topological space. This topology is called the Zariski topology on Spec(A).

Prove that:

- (a) If $I = \langle E \rangle$ is the ideal generated by E, then V(I) = V(E).
- (b) Show that V(0) = X and $V(1) = \emptyset$.
- (c) If $\{E_i\}_{i\in I}$ is any family of subsets of A, then $V(\cup_i E_i) = \cap_{i\in I} V(E_i)$.
- (d) For any ideals I, J of A, show that $V(I \cap J) = V(IJ) = V(I) \cup V(J)$.