Dartmouth College

Mathematics 101
Homework 7 (due Thursday, Nov 19)

1. Let $A=\mathbb{Z}$ and $\mathfrak{p}=p \mathbb{Z}$ with p a prime in \mathbb{Z}. We have characterized the localization $A_{\mathfrak{p}}=\mathbb{Z}_{\mathfrak{p}}$ as $\{a / b \in \mathbb{Q} \mid a, b \in \mathbb{Z}, p \nmid b, \operatorname{gcd}(a, b)=1\}$.
(a) Show that every nonzero element in $\mathbb{Z}_{\mathfrak{p}}$ can be written uniquely as $p^{\nu} u$ where ν is a nonnegative integer and $u \in \mathbb{Z}_{\mathfrak{p}}^{\times}$. You may of course assume unique factorization in \mathbb{Z}.
(b) Characterize all the ideals of $\mathbb{Z}_{\mathfrak{p}}$, and confirm that $\mathbb{Z}_{\mathfrak{p}}$ has a unique maximal ideal.
(c) Show that $\mathbb{Z}_{\mathfrak{p}} / p \mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z} / p \mathbb{Z}$.
2. Let A be a commutative ring with identity.
(a) Suppose that for each prime ideal \mathfrak{P} in A, the local ring $A_{\mathfrak{F}}$ has no nonzero nilpotent elements. Show that A has no nonzero nilpotent elements. Hint: Show that for an element $x \in A$, the set $\operatorname{Ann}(x)=\{y \in A \mid y x=0\}$ is an ideal of A. $\operatorname{Ann}(x)$ is called the annihilator of the element x.
(b) Proof or counterexample: If for each prime \mathfrak{P} of A, each localization $A_{\mathfrak{F}}$ is an integral domain, then A is an integral domain.
3. Let A be an integral domain, $S \subsetneq A$ a multiplicative subset containing 1 (but not containing 0).
(a) Show that $S^{-1} A$ is an integral domain.
(b) Show that if A is a PID (every ideal is principal), so is $S^{-1} A$.
4. Consider the localization of $\mathbb{Z}[x]$ at the prime ideal (x).
(a) Describe the elements of $\mathbb{Z}[x]_{(x)}$.
(b) Is (x) maximal in $\mathbb{Z}[x]_{(x)}$? If so, describe the resulting quotient field.
(c) How does $\mathbb{Z}[x]_{(x)}$ compare to $\mathbb{Q}[x]_{(x)}$?
5. Let A be a commutative ring with identity, and let X be the set of all prime ideals in A. X is called the prime spectrum of A, written $\operatorname{Spec}(A)$. For each subset $E \subseteq A$, let $V(E)$ denote the set of primes ideals of A which contain E. The properties below
demonstrate that the sets $V(E)$ satisfy the axioms for closed sets in a topological space. This topology is called the Zariski topology on $\operatorname{Spec}(A)$.

Prove that:
(a) If $I=\langle E\rangle$ is the ideal generated by E, then $V(I)=V(E)$.
(b) Show that $V(0)=X$ and $V(1)=\emptyset$.
(c) If $\left\{E_{i}\right\}_{i \in I}$ is any family of subsets of A, then $V\left(\cup_{i} E_{i}\right)=\cap_{i \in I} V\left(E_{i}\right)$.
(d) For any ideals I, J of A, show that $V(I \cap J)=V(I J)=V(I) \cup V(J)$.

