Dartmouth College

Mathematics 101
Homework 5 (due Thursday, Oct 29)

1. Semidirect products. We showed in class that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{\times}$.
(a) Suppose that H_{1}, H_{2} and K are groups, $\sigma: H_{1} \rightarrow H_{2}$ is an isomorphism, and $\psi: H_{2} \rightarrow \operatorname{Aut}(K)$ a homomorphism, so that $\varphi=\psi \circ \sigma: H_{1} \rightarrow \operatorname{Aut}(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_{1} \cong K \rtimes_{\psi} H_{2}$.
(b) Suppose that H and K are groups and $\varphi, \psi: H \rightarrow A u t(K)$ are monomorphisms with the same image in $\operatorname{Aut}(K)$. Show that there exists a $\sigma \in \operatorname{Aut}(H)$ such that $\psi=\varphi \circ \sigma$.
(c) Suppose that H and K are groups, $\varphi, \psi: H \rightarrow \operatorname{Aut}(K)$ are monomorphisms, and $\operatorname{Aut}(K)$ is finite and cyclic. Show that φ and ψ have the same image in $\operatorname{Aut}(K)$.
(d) Let $p<q$ be primes with $p \mid(q-1)$. Let H and K be cyclic groups of order p and q respectively. Let $\varphi, \psi: H \rightarrow \operatorname{Aut}(K)$ be nontrivial homomorphisms. Observing that $A u t(K)$ is cyclic, show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
(e) Let $p<q$ be primes. Show that up to isomorphism, there are at most two groups of order $p q$.
2. Let H be a group, and by H^{n} denote group which is the external direct product of H with itself n times. Show that the symmetric group S_{n} acts on H^{n} via $\left(\sigma,\left(h_{1}, \ldots, h_{n}\right)\right) \mapsto$ $\left(h_{\sigma^{-1}(1)}, \ldots, h_{\sigma^{-1}(n)}\right)$. Note that the obvious map $\left(\sigma,\left(h_{1}, \ldots, h_{n}\right)\right) \mapsto\left(h_{\sigma(1)}, \ldots, h_{\sigma(n)}\right)$ is a right action, that is you need the inverses so that the permutation representation is a homomorphism.

Hint: This is a bit subtle with notation; you may find the following observation useful. In set theory, Y^{X} denotes the set of functions $f: X \rightarrow Y$, so one can interpret H^{n} as H^{X} where $X=\{1,2, \ldots, n\}$. Now show that the natural action of S_{n} on X induces an action of S_{n} on $H^{X} \cong H^{n}$ as suggested above.
3. Let A, B be groups and let $|B|=n$. We know that B acting on itself by left translation induces an injective homomorphism $\rho: B \rightarrow S_{n}$; this permutation representation is usually called the left regular representation. As we saw in the previous problem, S_{n} acts on A^{n} with permutation representation $\varphi: S_{n} \rightarrow \operatorname{Aut}\left(A^{n}\right)$. The composition of
φ and ρ, is a homomorphism $\varphi \circ \rho: B \rightarrow \operatorname{Aut}\left(A^{n}\right)$. The wreath product of A by B, denoted $A \imath B$, is defined to be the semidirect product $A \imath B=A^{n} \rtimes_{\varphi \circ \rho} B$.

Show (obvious) that the order of $A \imath B$ is $|A|^{|B|} \cdot|B|$. From this it is clear that $\mathbb{Z}_{2} \imath \mathbb{Z}_{2}$ is a group of order 8 . Determine its isomorphism class in part by writing out all eight elements and finding their orders.
4. The point of this exercise is to show that for p a prime, any Sylow p-subgroup of $S_{p^{2}}$ is isomorphic to $\mathbb{Z}_{p} \backslash \mathbb{Z}_{p}$.
(a) First compute the cardinality of a Sylow p-subgroup of $S_{p^{2}}$ (without assuming the isomorphism).
(b) The following is outline of a proof is from Rotman's Theory of Groups, where a more general result is established. Let $B_{0}=\{1,2, \ldots, p\}$ and let $B_{i}=B_{0}+i p$, so that the set $\left\{1,2, \ldots, p^{2}\right\}$ is the disjoint union $B_{0} \cup \cdots \cup B_{p-1}$. Consider the permutation $\sigma \in S_{p^{2}}$ which for $b_{0} \in B_{0}$ takes

$$
\sigma\left(b_{0}+i p\right)= \begin{cases}b_{0}+(i+1) p & \text { if } i<p-1 \\ b_{0} & \text { if } i=p-1\end{cases}
$$

Verify that $B_{i+1}=\sigma\left(B_{i}\right)$ (with the subscripts read modulo p), and that σ has order p.
(c) Let $H=H_{0}$ denote a Sylow p-subgroup of S_{p}; observe that it is cyclic of order p. Viewing H_{0} also a subgroup of $S_{p^{2}}$, let H_{1} be the image of H_{0} under the action of σ; so for example the cycle ($123 \ldots p$) would go to ($p+1 p+2 \ldots 2 p$). Now let $H_{i+1}=\sigma\left(H_{i}\right)$. Show that $S_{p^{2}}$ contains a subgroup $K=H_{0} \cdots H_{p-1} \cong$ $H_{0} \times \cdots \times H_{p-1} \cong H^{p}$. Hint: Disjoint permutations commute.
(d) Show that $K \cap\langle\sigma\rangle=\{e\}$.
(e) Rotman now says to show that for $\left(\tau_{0}, \tau_{1}, \ldots, \tau_{p-1}\right) \in H_{0} \times \cdots \times H_{p-1}$, we have $\sigma\left(\tau_{0}, \tau_{1}, \ldots, \tau_{p-1}\right) \sigma^{-1}=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{p-1}, \tau_{0}\right)$.
This is actually pretty subtle. You are trying to lead up to identifying $\langle K, \sigma\rangle$ as a wreath product and so you want to observe the standard action on H^{p}. The subtlety is that $H^{p} \cong H_{0} \times \cdots \times H_{p-1}$ and you need to chase through the identification to verify his claim.
(f) Conclude that $\langle K, \sigma\rangle \cong H\left\langle\langle\sigma\rangle \cong \mathbb{Z}_{p}\left\langle\mathbb{Z}_{p}\right.\right.$

