Dartmouth College

Mathematics 101 Homework 4 (due Thursday, Oct 22)

- 1. Let G be a finite group and H a proper subgroup. Show that G is not the union of conjugates of H. Note the contrast to an earlier homework with $G = GL_2(\mathbb{C})$ and H the group of upper triangular matrices.
- 2. For $n \geq 3$, characterize the center of the symmetric group, S_n .
- 3. Show that for $n \ge 5$, the only normal subgroups of S_n are $\{e\}$, A_n and S_n . Use this fact to show that for $n \ge 5$, S_n is not a solvable group.
- 4. Let G be a nonabelian group of order p^3 , p a prime. Show that the commutator of G equals its center.
- 5. Let p < q be primes, and G a nonabelian group of order pq. Show that there is an embedding of G into the symmetric group S_q .
- 6. Let p, q be primes (not necessarily distinct). Show that any group of order p^2q is solvable.