Dartmouth College

Mathematics 101
Homework 7 (due Wednesday, November 28)

1. Let A be a commutative ring with identity. Let I_{1}, \ldots, I_{n} be ideals in A which are coprime in pairs. Show that $I_{1} I_{2} \cdots I_{n}=I_{1} \cap I_{2} \cap \cdots \cap I_{n}$.
2. Let A be a commutative ring with identity, and let X be the set of all prime ideals in A. X is called the prime spectrum of A, written $\operatorname{Spec}(A)$. For each subset $E \subseteq A$, let $V(E)$ denote the set of primes ideals of A which contain E. Prove that:
(a) If $I=\langle E\rangle$ is the ideal generated by E, then $V(I)=V(E)$.
(b) Show that $V(0)=X$ and $V(1)=\emptyset$.
(c) If $\left\{E_{i}\right\}_{i \in I}$ is any family of subsets of A, then $V\left(\cup_{i} E_{i}\right)=\cap_{i \in I} V\left(E_{i}\right)$.
(d) For any ideals I, J of A, show that $V(I \cap J)=V(I J)=V(I) \cup V(J)$. These properties demonstrate that the sets $V(E)$ satisfy the axioms for closed sets in a topological space. This topology is called the Zariski topology on $\operatorname{Spec}(A)$.
3. Let $A=\mathbb{Z}$ and $\mathfrak{p}=p \mathbb{Z}$ with p a prime in \mathbb{Z}. We have characterized the localization $A_{\mathfrak{p}}=\mathbb{Z}_{\mathfrak{p}}$ as $\{a / b \in \mathbb{Q} \mid a, b \in Z, p \nmid b, \operatorname{gcd}(a, b)=1\}$.
(a) Characterize the unit group $\mathbb{Z}_{\mathfrak{p}}^{\times}$.
(b) Show that every nonzero element in $\mathbb{Z}_{\mathfrak{p}}$ can be written uniquely as $p^{\nu} u$ where ν is a nonnegative integer and $u \in \mathbb{Z}_{\mathfrak{p}}^{\times}$. You may of course assume unique factorization in \mathbb{Z}.
(c) Characterize all the ideals of $\mathbb{Z}_{\mathfrak{p}}$, and confirm that $\mathbb{Z}_{\mathfrak{p}}$ has a unique maximal ideal.
(d) Show that $\mathbb{Z}_{\mathfrak{p}} / p \mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z} / p \mathbb{Z}$.
4. Consider the localization of $\mathbb{Z}[x]$ at the prime ideal (x).
(a) Describe the elements of $\mathbb{Z}[x]_{(x)}$.
(b) Is (x) maximal in $\mathbb{Z}[x]_{(x)}$? If so, describe the resulting quotient field.
(c) How does $\mathbb{Z}[x]_{(x)}$ compare to $\mathbb{Q}[x]_{(x)}$?
