Dartmouth College

Mathematics 101

Homework 7 (due Wednesday, November 28)

- 1. Let A be a commutative ring with identity. Let I_1, \ldots, I_n be ideals in A which are coprime in pairs. Show that $I_1I_2 \cdots I_n = I_1 \cap I_2 \cap \cdots \cap I_n$.
- 2. Let A be a commutative ring with identity, and let X be the set of all prime ideals in A. X is called the prime spectrum of A, written Spec(A). For each subset $E \subseteq A$, let V(E) denote the set of primes ideals of A which contain E. Prove that:
 - (a) If $I = \langle E \rangle$ is the ideal generated by E, then V(I) = V(E).
 - (b) Show that V(0) = X and $V(1) = \emptyset$.
 - (c) If $\{E_i\}_{i \in I}$ is any family of subsets of A, then $V(\cup_i E_i) = \bigcap_{i \in I} V(E_i)$.
 - (d) For any ideals I, J of A, show that $V(I \cap J) = V(IJ) = V(I) \cup V(J)$. These properties demonstrate that the sets V(E) satisfy the axioms for closed sets in a topological space. This topology is called the Zariski topology on Spec(A).
- 3. Let $A = \mathbb{Z}$ and $\mathfrak{p} = p\mathbb{Z}$ with p a prime in \mathbb{Z} . We have characterized the localization $A_{\mathfrak{p}} = \mathbb{Z}_{\mathfrak{p}}$ as $\{a/b \in \mathbb{Q} \mid a, b \in Z, p \nmid b, \gcd(a, b) = 1\}.$
 - (a) Characterize the unit group $\mathbb{Z}_{\mathfrak{p}}^{\times}$.
 - (b) Show that every nonzero element in Z_p can be written uniquely as p^νu where ν is a nonnegative integer and u ∈ Z_p[×]. You may of course assume unique factorization in Z.
 - (c) Characterize all the ideals of \mathbb{Z}_p , and confirm that \mathbb{Z}_p has a unique maximal ideal.
 - (d) Show that $\mathbb{Z}_{\mathfrak{p}}/p\mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z}/p\mathbb{Z}$.
- 4. Consider the localization of $\mathbb{Z}[x]$ at the prime ideal (x).
 - (a) Describe the elements of $\mathbb{Z}[x]_{(x)}$.
 - (b) Is (x) maximal in $\mathbb{Z}[x]_{(x)}$? If so, describe the resulting quotient field.
 - (c) How does $\mathbb{Z}[x]_{(x)}$ compare to $\mathbb{Q}[x]_{(x)}$?