Dartmouth College

Mathematics 101

Homework 4 (due Wednesday, Oct 24)

1. Show that the following three statements are equivalent. The second is the FeitThompson theorem.
(a) A finite non-abelian simple group has even order.
(b) A simple group of odd order is isomorphic to $\mathbb{Z} / p \mathbb{Z}$ where p is a prime.
(c) Every group of odd order is solvable.
2. Let G be a finite group and H a proper subgroup. Show that G is not the union of conjugates of H.
3. Let G be a finite simple group containing an element of order 21. Show that every proper subgroup H of G satisfies $[G: H] \geq 7$ and show $|G| \geq 168$.
4. Let p be a prime, and G a p-group, i.e., $|G|=p^{m}$ for some $m \geq 1$.
(a) Suppose that H is a nontrivial normal subgroup of G. Show that $H \cap Z_{G} \neq\{e\}$ where Z_{G} is the center of G. In particular, every normal subgroup H of order p is contained in the center.
(b) If G is nonabelian of order p^{3}, show that $Z_{G}=G^{\prime}$ (the commutator), and they are both cyclic of order p.
