Dartmouth College

Mathematics 101

Homework 1 (due Wednesday, October 3)

Let \mathbb{F}_q denote the finite field with q elements.

- 1. Show that the group $GL_n(\mathbb{F}_q)$ $(n \ge 1)$ has cardinality $(q^n 1)(q^n q) \cdots (q^n q^{n-1})$. *Hint:* You may use without proof that an $n \times n$ matrix is invertible if and only if its rows (resp. columns) are linearly independent.
- 2. Find a formula for the number of k-dimensional subspaces of the n-dimensional vector space \mathbb{F}_q^n . Prove that the number of k-dimensional subspaces is the same as the number of (n k)-dimensional subspaces. In class, we will consider this duality for finite dimensional vector spaces over an arbitrary field.
- 3. Let V be an n-dimensional vector space over a field K, and $T: V \to V$ a linear operator such that $T^n = 0$, but $T^{n-1} \neq 0$.
 - (a) For each integer j with $1 \le j \le n$ show that the rank of T^j is n-j.
 - (b) Use this fact to show that there is a basis of V with respect to which the matrix of T is strictly upper triangular (i.e. all entries on and below the diagonal are zero).
- 4. Let V be an n-dimensional vector space over a field K, and $V^* = Hom_k(V, k)$ its dual. For a subspace $W \subset V$, let W^0 be the annihilator of W, that is

$$W^0 = \{ \varphi \in V^* \mid \varphi(w) = 0 \text{ for all } w \in W \}.$$

For subspaces W_1 and W_2 of V, show that

- (a) $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
- (b) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.