Dartmouth College

Mathematics 101

Homework 1 (due Wednesday, October 3)

Let \mathbb{F}_{q} denote the finite field with q elements.

1. Show that the group $G L_{n}\left(\mathbb{F}_{q}\right)(n \geq 1)$ has cardinality $\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{n-1}\right)$. Hint: You may use without proof that an $n \times n$ matrix is invertible if and only if its rows (resp. columns) are linearly independent.
2. Find a formula for the number of k-dimensional subspaces of the n-dimensional vector space \mathbb{F}_{q}^{n}. Prove that the number of k-dimensional subspaces is the same as the number of $(n-k)$-dimensional subspaces. In class, we will consider this duality for finite dimensional vector spaces over an arbitrary field.
3. Let V be an n-dimensional vector space over a field K, and $T: V \rightarrow V$ a linear operator such that $T^{n}=0$, but $T^{n-1} \neq 0$.
(a) For each integer j with $1 \leq j \leq n$ show that the rank of T^{j} is $n-j$.
(b) Use this fact to show that there is a basis of V with respect to which the matrix of T is strictly upper triangular (i.e. all entries on and below the diagonal are zero).
4. Let V be an n-dimensional vector space over a field K, and $V^{*}=\operatorname{Hom}_{k}(V, k)$ its dual. For a subspace $W \subset V$, let W^{0} be the annihilator of W , that is

$$
W^{0}=\left\{\varphi \in V^{*} \mid \varphi(w)=0 \text { for all } w \in W\right\}
$$

For subspaces W_{1} and W_{2} of V, show that
(a) $\left(W_{1}+W_{2}\right)^{0}=W_{1}^{0} \cap W_{2}^{0}$.
(b) $\left(W_{1} \cap W_{2}\right)^{0}=W_{1}^{0}+W_{2}^{0}$.

