Dartmouth College

Mathematics 101
Homework 6 (due Wednesday, November 19)

1. Let $A=\mathbb{Z}$ and $\mathfrak{p}=p \mathbb{Z}$ with p a prime in \mathbb{Z}. We have characterized the localization $A_{\mathfrak{p}}=\mathbb{Z}_{\mathfrak{p}}$ as $\{a / b \in \mathbb{Q} \mid a, b \in Z, p \nmid b, \operatorname{gcd}(a, b)=1\}$.
(a) Characterize the unit group $\mathbb{Z}_{\mathfrak{p}}^{\times}$.
(b) Show that every nonzero element in $\mathbb{Z}_{\mathfrak{p}}$ can be written uniquely as $p^{\nu} u$ where ν is a nonnegative integer and $u \in \mathbb{Z}_{\mathfrak{p}}^{\times}$. You may of course assume unique factorization in \mathbb{Z}.
(c) Characterize all the ideals of $\mathbb{Z}_{\mathfrak{p}}$, and confirm that $\mathbb{Z}_{\mathfrak{p}}$ has a unique maximal ideal.
(d) Show that $\mathbb{Z}_{\mathfrak{p}} / p \mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z} / p \mathbb{Z}$.
2. Let A be a ring with identity, and let $\alpha \in A$. Consider the evaluation map $\varphi_{\alpha}: A[x] \rightarrow A$ whose domain is the polynomial ring $A[x]$, defined by $\varphi_{\alpha}(f)=f(\alpha)$.
(a) If A is commutative, show that φ_{α} is a ring homomorphism.
(b) If A is not commutative, give a counterexample. Note: Hamilton's quaternions, defined on page 117 of your text, is a very nice ring. Also, while we have not yet formally defined polynomial rings yet, I have confidence you'll do the right thing.
3. Consider the following popular argument in textbooks for showing a nonzero polynomial of degree n with coefficients in a field has at most n distinct roots in the field.

The proof typically proceeds by induction on n. Suppose that A is a field, and let $f(x) \in A[x]$ have degree $n>0$, and let $\alpha \in A$ with $f(x)=(x-\alpha) g(x)$ for $g \in A[x]$ with degree of g equaling $n-1$. Let β be a root of f and assume that $\alpha \neq \beta$. Then β is a root of g, and so by induction f has at most n distinct roots.

While the argument can be made rigorous in the case A is a field, it is rarely done. Given the exact argument as above, let A be a division ring (necessarily with identity). Find a counterexample to the assertion about the number of distinct roots, and explain where there is a gap in the argument in the case of a non-commutative division ring.
4. Let A be an integral domain, and $T \subset S$ two multiplicative subsets of A, with $0 \notin S$. Show that there is a natural embedding of $T^{-1} A \rightarrow S^{-1} A$.

