Dartmouth College

Mathematics 101

Homework 6 (due Wednesday, November 19)

- 1. Let $A = \mathbb{Z}$ and $\mathfrak{p} = p\mathbb{Z}$ with p a prime in \mathbb{Z} . We have characterized the localization $A_{\mathfrak{p}} = \mathbb{Z}_{\mathfrak{p}}$ as $\{a/b \in \mathbb{Q} \mid a, b \in Z, p \nmid b, \gcd(a, b) = 1\}.$
 - (a) Characterize the unit group $\mathbb{Z}_{\mathfrak{p}}^{\times}$.
 - (b) Show that every nonzero element in Z_p can be written uniquely as p^νu where ν is a nonnegative integer and u ∈ Z_p[×]. You may of course assume unique factorization in Z.
 - (c) Characterize all the ideals of \mathbb{Z}_p , and confirm that \mathbb{Z}_p has a unique maximal ideal.
 - (d) Show that $\mathbb{Z}_{\mathfrak{p}}/p\mathbb{Z}_{\mathfrak{p}} \cong \mathbb{Z}/p\mathbb{Z}$.
- 2. Let A be a ring with identity, and let $\alpha \in A$. Consider the evaluation map $\varphi_{\alpha} : A[x] \to A$ whose domain is the polynomial ring A[x], defined by $\varphi_{\alpha}(f) = f(\alpha)$.
 - (a) If A is commutative, show that φ_{α} is a ring homomorphism.
 - (b) If A is not commutative, give a counterexample. Note: Hamilton's quaternions, defined on page 117 of your text, is a very nice ring. Also, while we have not yet formally defined polynomial rings yet, I have confidence you'll do the right thing.
- 3. Consider the following popular argument in textbooks for showing a nonzero polynomial of degree n with coefficients in a field has at most n distinct roots in the field.

The proof typically proceeds by induction on n. Suppose that A is a field, and let $f(x) \in A[x]$ have degree n > 0, and let $\alpha \in A$ with $f(x) = (x - \alpha)g(x)$ for $g \in A[x]$ with degree of g equaling n - 1. Let β be a root of f and assume that $\alpha \neq \beta$. Then β is a root of g, and so by induction f has at most n distinct roots.

While the argument can be made rigorous in the case A is a field, it is rarely done. Given the exact argument as above, let A be a division ring (necessarily with identity). Find a counterexample to the assertion about the number of distinct roots, and explain where there is a gap in the argument in the case of a non-commutative division ring.

4. Let A be an integral domain, and $T \subset S$ two multiplicative subsets of A, with $0 \notin S$. Show that there is a natural embedding of $T^{-1}A \to S^{-1}A$.