Dartmouth College

Mathematics 101 Homework 5 (due Wednesday, October 29)

- 1. Let p < q be primes and G a group of order p^2q . Show that G is not simple.
- 2. Let G be a group of order 12, and assume that G has more than one Sylow 3-subgroup. Show that $G \cong A_4$. Hint: Letting G act on the set of Sylow 3-subgroups will provide a homomorphism $\varphi : G \to S_4$.
- 3. Denote by $Aut(\mathbb{Z}_n)$ the group of automorphisms of \mathbb{Z}_n (viewing \mathbb{Z}_n as an additive group). Show that $Aut(\mathbb{Z}_n) \cong \mathbb{Z}_n^{\times} (\mathbb{Z}_n^{\times}$ the multiplicative group of the ring \mathbb{Z}_n). It may be of use to recall some of the work we did early in the term on homomorphisms with domain \mathbb{Z}_n .
- 4. Semidirect madness.
 - (a) Suppose that H_1 , H_2 and K are groups, $\sigma : H_1 \to H_2$ is an isomorphism, and $\psi : H_2 \to Aut(K)$ a homomorphism, so that $\varphi = \psi \circ \sigma : H_1 \to Aut(K)$ is also a homomorphism. Show that $K \rtimes_{\varphi} H_1 \cong K \rtimes_{\psi} H_2$.
 - (b) Suppose that H and K are groups and φ, ψ : H → Aut(K) are monomorphisms with the same image in Aut(K). Show that there exists a σ ∈ Aut(K) such that ψ = φ ∘ σ.
 - (c) Suppose that H and K are groups, $\varphi, \psi : H \to Aut(K)$ are monomorphisms, and Aut(K) is finite and cyclic. Show that φ and ψ have the same image in Aut(K).
 - (d) Let p < q be primes with $p \mid (q-1)$. Let H and K be cyclic groups of order p and q respectively. Let $\varphi, \psi: H \to Aut(K)$ be nontrivial homomorphisms. Observing that Aut(K) is cyclic, show that $K \rtimes_{\varphi} H \cong K \rtimes_{\psi} H$.
- 5. Let p < q be primes, and let G be a group of order pq.
 - (a) Show that if $p \nmid (q-1)$, then G is cyclic.
 - (b) Show that if $p \mid (q-1)$, then either G is cyclic or $G \cong \mathbb{Z}_q \rtimes_{\varphi} \mathbb{Z}_p$ for some (and hence any) nontrivial $\varphi : \mathbb{Z}_p \to Aut(\mathbb{Z}_q)$. In particular, if p = 2, show that $G \cong \mathbb{Z}_{2q}$ or D_{2q} , the dihedral group.